DunnBC22 commited on
Commit
6197718
1 Parent(s): 2f25c63

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - imagefolder
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: dit-base-Document_Classification-RVL_CDIP
10
+ results:
11
+ - task:
12
+ name: Image Classification
13
+ type: image-classification
14
+ dataset:
15
+ name: imagefolder
16
+ type: imagefolder
17
+ config: data
18
+ split: train
19
+ args: data
20
+ metrics:
21
+ - name: Accuracy
22
+ type: accuracy
23
+ value: 0.976678084687705
24
+ ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ # dit-base-Document_Classification-RVL_CDIP
30
+
31
+ This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the imagefolder dataset.
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 0.0786
34
+ - Accuracy: 0.9767
35
+ - Weighted f1: 0.9768
36
+ - Micro f1: 0.9767
37
+ - Macro f1: 0.9154
38
+ - Weighted recall: 0.9767
39
+ - Micro recall: 0.9767
40
+ - Macro recall: 0.9019
41
+ - Weighted precision: 0.9771
42
+ - Micro precision: 0.9767
43
+ - Macro precision: 0.9314
44
+
45
+ ## Model description
46
+
47
+ More information needed
48
+
49
+ ## Intended uses & limitations
50
+
51
+ More information needed
52
+
53
+ ## Training and evaluation data
54
+
55
+ More information needed
56
+
57
+ ## Training procedure
58
+
59
+ ### Training hyperparameters
60
+
61
+ The following hyperparameters were used during training:
62
+ - learning_rate: 5e-05
63
+ - train_batch_size: 32
64
+ - eval_batch_size: 32
65
+ - seed: 42
66
+ - gradient_accumulation_steps: 4
67
+ - total_train_batch_size: 128
68
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
69
+ - lr_scheduler_type: linear
70
+ - lr_scheduler_warmup_ratio: 0.1
71
+ - num_epochs: 3
72
+
73
+ ### Training results
74
+
75
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
76
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
77
+ | 0.1535 | 1.0 | 208 | 0.1126 | 0.9622 | 0.9597 | 0.9622 | 0.5711 | 0.9622 | 0.9622 | 0.5925 | 0.9577 | 0.9622 | 0.5531 |
78
+ | 0.1195 | 2.0 | 416 | 0.0843 | 0.9738 | 0.9736 | 0.9738 | 0.8502 | 0.9738 | 0.9738 | 0.8037 | 0.9741 | 0.9738 | 0.9287 |
79
+ | 0.0979 | 3.0 | 624 | 0.0786 | 0.9767 | 0.9768 | 0.9767 | 0.9154 | 0.9767 | 0.9767 | 0.9019 | 0.9771 | 0.9767 | 0.9314 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.28.1
85
+ - Pytorch 2.0.0
86
+ - Datasets 2.11.0
87
+ - Tokenizers 0.13.3