DunnBC22's picture
Training in progress, epoch 1
6245bea
raw
history blame
1.4 kB
{
"_name_or_path": "google/efficientnet-b5",
"architectures": [
"EfficientNetForImageClassification"
],
"batch_norm_eps": 0.001,
"batch_norm_momentum": 0.99,
"depth_coefficient": 2.2,
"depth_divisor": 8,
"depthwise_padding": [
13,
27
],
"drop_connect_rate": 0.2,
"dropout_rate": 0.4,
"expand_ratios": [
1,
6,
6,
6,
6,
6,
6
],
"hidden_act": "swish",
"hidden_dim": 2048,
"id2label": {
"0": "glioma_tumor",
"1": "meningioma_tumor",
"2": "no_tumor",
"3": "pituitary_tumor"
},
"image_size": 456,
"in_channels": [
32,
16,
24,
40,
80,
112,
192
],
"initializer_range": 0.02,
"kernel_sizes": [
3,
3,
5,
3,
5,
5,
3
],
"label2id": {
"glioma_tumor": "0",
"meningioma_tumor": "1",
"no_tumor": "2",
"pituitary_tumor": "3"
},
"model_type": "efficientnet",
"num_block_repeats": [
1,
2,
2,
3,
3,
4,
1
],
"num_channels": 3,
"num_hidden_layers": 64,
"out_channels": [
16,
24,
40,
80,
112,
192,
320
],
"pooling_type": "mean",
"problem_type": "single_label_classification",
"squeeze_expansion_ratio": 0.25,
"strides": [
1,
2,
2,
2,
1,
2,
1
],
"torch_dtype": "float32",
"transformers_version": "4.28.1",
"width_coefficient": 1.6
}