--- license: mit tags: - generated_from_trainer metrics: - bleu - rouge model-index: - name: mbart-large-50-English_French_Translation_v2 results: [] language: - en - fr --- # mbart-large-50-English_French_Translation_v2 This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3902 - Bleu: 35.1914 - Rouge: {'rouge1': 0.641952430267112, 'rouge2': 0.4572909036472911, 'rougeL': 0.607001331434416, 'rougeLsum': 0.6068905123656807} - Meteor: {'meteor': 0.5916610499445853} ## Model description This model translates French input text samples to English. For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Machine%20Translation/NLP%20Translation%20Project-EN:FR.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/hgultekin/paralel-translation-corpus-in-22-languages ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Meteor | |:-------------:|:-----:|:----:|:---------------:|:-------:|:----------------------------------------------------------------------------------------------------------------------------:|:------------------------------:| | 1.1677 | 1.0 | 750 | 0.3902 | 35.1914 | {'rouge1': 0.6419485887304972, 'rouge2': 0.45727961744986984, 'rougeL': 0.6069956611472951, 'rougeLsum': 0.6068859187671477} | {'meteor': 0.5916768663368279} | ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.1 - Datasets 2.9.0 - Tokenizers 0.12.1