--- license: mit tags: - translation - generated_from_trainer metrics: - bleu - rouge model-index: - name: mbart-large-50-English_Spanish_Translation results: [] language: - en - es --- # mbart-large-50-English_Spanish_Translation This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0290 - Bleu: 41.4437 - Rouge: {'rouge1': 0.6751402780531002, 'rouge2': 0.49769602014143044, 'rougeL': 0.6371513427059108, 'rougeLsum': 0.6376403149816605} - Meteor: {'meteor': 0.6479226630466496} ## Model description This project translates Spanish text inputs into English. Here is the link to the script I created to train this model: https://github.com/DunnBC22/NLP_Projects/blob/main/Machine%20Translation/NLP%20Translation%20Project-EN:ES.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/hgultekin/paralel-translation-corpus-in-22-languages ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Meteor | |:-------------:|:-----:|:----:|:---------------:|:-------:|:----------------------------------------------------------------------------------------------------------------------------:|:------------------------------:| | 1.5608 | 1.0 | 900 | 1.0899 | 39.9184 | {'rouge1': 0.6645461901016299, 'rouge2': 0.48457734138815345, 'rougeL': 0.6254335531454508, 'rougeLsum': 0.6258737583448748} | {'meteor': 0.6376166612731494} | | 0.9734 | 2.0 | 1800 | 1.0290 | 41.4436 | {'rouge1': 0.6751348620702116, 'rouge2': 0.4976855704059807, 'rougeL': 0.6371345376462452, 'rougeLsum': 0.6376186633843448} | {'meteor': 0.6479188510808377} | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1 - Datasets 2.5.2 - Tokenizers 0.12.1