DunnBC22 commited on
Commit
f054691
1 Parent(s): 084be67

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: medium-base-News_About_Gold
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # medium-base-News_About_Gold
16
+
17
+ This model is a fine-tuned version of [funnel-transformer/medium-base](https://huggingface.co/funnel-transformer/medium-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2838
20
+ - Accuracy: 0.9172
21
+ - Weighted f1: 0.9170
22
+ - Micro f1: 0.9172
23
+ - Macro f1: 0.8854
24
+ - Weighted recall: 0.9172
25
+ - Micro recall: 0.9172
26
+ - Macro recall: 0.8859
27
+ - Weighted precision: 0.9171
28
+ - Micro precision: 0.9172
29
+ - Macro precision: 0.8853
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 2e-05
49
+ - train_batch_size: 64
50
+ - eval_batch_size: 64
51
+ - seed: 42
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - num_epochs: 5
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
60
+ | 0.7426 | 1.0 | 133 | 0.3820 | 0.8803 | 0.8636 | 0.8803 | 0.6690 | 0.8803 | 0.8803 | 0.6809 | 0.8862 | 0.8803 | 0.8992 |
61
+ | 0.332 | 2.0 | 266 | 0.3083 | 0.9007 | 0.8987 | 0.9007 | 0.8525 | 0.9007 | 0.9007 | 0.8402 | 0.9015 | 0.9007 | 0.8705 |
62
+ | 0.2381 | 3.0 | 399 | 0.2870 | 0.9106 | 0.9097 | 0.9106 | 0.8686 | 0.9106 | 0.9106 | 0.8539 | 0.9096 | 0.9106 | 0.8862 |
63
+ | 0.1911 | 4.0 | 532 | 0.2797 | 0.9163 | 0.9158 | 0.9163 | 0.8843 | 0.9163 | 0.9163 | 0.8819 | 0.9159 | 0.9163 | 0.8873 |
64
+ | 0.1584 | 5.0 | 665 | 0.2838 | 0.9172 | 0.9170 | 0.9172 | 0.8854 | 0.9172 | 0.9172 | 0.8859 | 0.9171 | 0.9172 | 0.8853 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.28.1
70
+ - Pytorch 2.0.0
71
+ - Datasets 2.11.0
72
+ - Tokenizers 0.13.3