DunnBC22 commited on
Commit
f688278
1 Parent(s): 98651f5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -11
README.md CHANGED
@@ -6,26 +6,32 @@ tags:
6
  model-index:
7
  - name: opus-mt-ko-en-Korean_Parallel_Corpora
8
  results: []
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
-
14
  # opus-mt-ko-en-Korean_Parallel_Corpora
15
 
16
- This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en) on the None dataset.
17
 
18
- ## Model description
19
 
20
- More information needed
21
 
22
- ## Intended uses & limitations
23
 
24
- More information needed
25
 
26
- ## Training and evaluation data
27
 
28
- More information needed
29
 
30
  ## Training procedure
31
 
@@ -44,11 +50,19 @@ The following hyperparameters were used during training:
44
 
45
  ### Training results
46
 
 
 
 
 
 
 
 
47
 
 
48
 
49
  ### Framework versions
50
 
51
  - Transformers 4.31.0
52
  - Pytorch 2.0.1+cu118
53
  - Datasets 2.14.4
54
- - Tokenizers 0.13.3
 
6
  model-index:
7
  - name: opus-mt-ko-en-Korean_Parallel_Corpora
8
  results: []
9
+ datasets:
10
+ - Moo/korean-parallel-corpora
11
+ language:
12
+ - ko
13
+ - en
14
+ metrics:
15
+ - bleu
16
+ - rouge
17
+ pipeline_tag: translation
18
  ---
19
 
 
 
 
20
  # opus-mt-ko-en-Korean_Parallel_Corpora
21
 
22
+ This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en).
23
 
24
+ ### Model description
25
 
26
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Machine%20Translation/Korean%20to%20English%20(Korean%20Parallel%20Corpora)/Korean_Parallel_Corpora_OPUS_Translation_Project.ipynb
27
 
28
+ ### Intended uses & limitations
29
 
30
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
31
 
32
+ ### Training and evaluation data
33
 
34
+ Dataset Source: https://huggingface.co/datasets/Moo/korean-parallel-corpora
35
 
36
  ## Training procedure
37
 
 
50
 
51
  ### Training results
52
 
53
+ - eval_loss: 2.6620
54
+ - eval_bleu: 14.3395
55
+ - eval_rouge
56
+ - rouge1: 0.4391
57
+ - rouge2: 0.2022
58
+ - rougeL: 0.3671
59
+ - rougeLsum: 0.3671
60
 
61
+ * The training results values are rounded to the nearest ten-thousandth.
62
 
63
  ### Framework versions
64
 
65
  - Transformers 4.31.0
66
  - Pytorch 2.0.1+cu118
67
  - Datasets 2.14.4
68
+ - Tokenizers 0.13.3