--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-ko-en tags: - generated_from_trainer model-index: - name: opus-mt-ko-en-Korean_Parallel_Corpora results: [] datasets: - Moo/korean-parallel-corpora language: - ko - en metrics: - bleu - rouge pipeline_tag: translation --- # opus-mt-ko-en-Korean_Parallel_Corpora This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en). ### Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Machine%20Translation/Korean%20to%20English%20(Korean%20Parallel%20Corpora)/Korean_Parallel_Corpora_OPUS_Translation_Project.ipynb ### Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ### Training and evaluation data Dataset Source: https://huggingface.co/datasets/Moo/korean-parallel-corpora ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results - eval_loss: 2.6620 - eval_bleu: 14.3395 - eval_rouge - rouge1: 0.4391 - rouge2: 0.2022 - rougeL: 0.3671 - rougeLsum: 0.3671 * The training results values are rounded to the nearest ten-thousandth. ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3