Update README.md
Browse files
README.md
CHANGED
@@ -6,26 +6,38 @@ tags:
|
|
6 |
model-index:
|
7 |
- name: opus-mt-zh-en-Chinese_to_English
|
8 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
-
should probably proofread and complete it, then remove this comment. -->
|
13 |
-
|
14 |
# opus-mt-zh-en-Chinese_to_English
|
15 |
|
16 |
-
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-zh-en](https://huggingface.co/Helsinki-NLP/opus-mt-zh-en)
|
17 |
|
18 |
## Model description
|
19 |
|
20 |
-
|
21 |
|
22 |
## Intended uses & limitations
|
23 |
|
24 |
-
|
25 |
|
26 |
## Training and evaluation data
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
## Training procedure
|
31 |
|
@@ -45,10 +57,13 @@ The following hyperparameters were used during training:
|
|
45 |
### Training results
|
46 |
|
47 |
|
|
|
|
|
|
|
48 |
|
49 |
### Framework versions
|
50 |
|
51 |
- Transformers 4.31.0
|
52 |
- Pytorch 2.0.1+cu118
|
53 |
- Datasets 2.14.4
|
54 |
-
- Tokenizers 0.13.3
|
|
|
6 |
model-index:
|
7 |
- name: opus-mt-zh-en-Chinese_to_English
|
8 |
results: []
|
9 |
+
datasets:
|
10 |
+
- GEM/wiki_lingua
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
- zh
|
14 |
+
metrics:
|
15 |
+
- bleu
|
16 |
+
- rouge
|
17 |
+
pipeline_tag: translation
|
18 |
---
|
19 |
|
|
|
|
|
|
|
20 |
# opus-mt-zh-en-Chinese_to_English
|
21 |
|
22 |
+
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-zh-en](https://huggingface.co/Helsinki-NLP/opus-mt-zh-en).
|
23 |
|
24 |
## Model description
|
25 |
|
26 |
+
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Machine%20Translation/Chinese%20to%20English%20Translation/Chinese_to_English_Translation.ipynb
|
27 |
|
28 |
## Intended uses & limitations
|
29 |
|
30 |
+
This model is intended to demonstrate my ability to solve a complex problem using technology.
|
31 |
|
32 |
## Training and evaluation data
|
33 |
|
34 |
+
Dataset Source: https://huggingface.co/datasets/GEM/wiki_lingua
|
35 |
+
|
36 |
+
__Chinese Text Length__
|
37 |
+
![Chinese Text Length](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Machine%20Translation/Chinese%20to%20English%20Translation/Images/Histogram%20-%20Chinese%20Text%20Length.png)
|
38 |
+
|
39 |
+
__English Text Length__
|
40 |
+
![English Text Length__](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Machine%20Translation/Chinese%20to%20English%20Translation/Images/Histogram%20-%20English%20Text%20Length.png)
|
41 |
|
42 |
## Training procedure
|
43 |
|
|
|
57 |
### Training results
|
58 |
|
59 |
|
60 |
+
| Epoch | Validation Loss | Bleu | Rouge1 | Rouge2 | RougeL | RougeLsum | Avg. Prediction Lengths |
|
61 |
+
|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|
|
62 |
+
| 1.0 | 1.0113 | 45.2808 | 0.6201 | 0.4198 | 0.5927 | 0.5927 | 24.5581 |
|
63 |
|
64 |
### Framework versions
|
65 |
|
66 |
- Transformers 4.31.0
|
67 |
- Pytorch 2.0.1+cu118
|
68 |
- Datasets 2.14.4
|
69 |
+
- Tokenizers 0.13.3
|