DunnBC22 commited on
Commit
5b5c809
1 Parent(s): c89af91

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -8
README.md CHANGED
@@ -6,26 +6,38 @@ tags:
6
  model-index:
7
  - name: opus-mt-zh-en-Chinese_to_English
8
  results: []
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
-
14
  # opus-mt-zh-en-Chinese_to_English
15
 
16
- This model is a fine-tuned version of [Helsinki-NLP/opus-mt-zh-en](https://huggingface.co/Helsinki-NLP/opus-mt-zh-en) on the None dataset.
17
 
18
  ## Model description
19
 
20
- More information needed
21
 
22
  ## Intended uses & limitations
23
 
24
- More information needed
25
 
26
  ## Training and evaluation data
27
 
28
- More information needed
 
 
 
 
 
 
29
 
30
  ## Training procedure
31
 
@@ -45,10 +57,13 @@ The following hyperparameters were used during training:
45
  ### Training results
46
 
47
 
 
 
 
48
 
49
  ### Framework versions
50
 
51
  - Transformers 4.31.0
52
  - Pytorch 2.0.1+cu118
53
  - Datasets 2.14.4
54
- - Tokenizers 0.13.3
 
6
  model-index:
7
  - name: opus-mt-zh-en-Chinese_to_English
8
  results: []
9
+ datasets:
10
+ - GEM/wiki_lingua
11
+ language:
12
+ - en
13
+ - zh
14
+ metrics:
15
+ - bleu
16
+ - rouge
17
+ pipeline_tag: translation
18
  ---
19
 
 
 
 
20
  # opus-mt-zh-en-Chinese_to_English
21
 
22
+ This model is a fine-tuned version of [Helsinki-NLP/opus-mt-zh-en](https://huggingface.co/Helsinki-NLP/opus-mt-zh-en).
23
 
24
  ## Model description
25
 
26
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Machine%20Translation/Chinese%20to%20English%20Translation/Chinese_to_English_Translation.ipynb
27
 
28
  ## Intended uses & limitations
29
 
30
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
31
 
32
  ## Training and evaluation data
33
 
34
+ Dataset Source: https://huggingface.co/datasets/GEM/wiki_lingua
35
+
36
+ __Chinese Text Length__
37
+ ![Chinese Text Length](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Machine%20Translation/Chinese%20to%20English%20Translation/Images/Histogram%20-%20Chinese%20Text%20Length.png)
38
+
39
+ __English Text Length__
40
+ ![English Text Length__](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Machine%20Translation/Chinese%20to%20English%20Translation/Images/Histogram%20-%20English%20Text%20Length.png)
41
 
42
  ## Training procedure
43
 
 
57
  ### Training results
58
 
59
 
60
+ | Epoch | Validation Loss | Bleu | Rouge1 | Rouge2 | RougeL | RougeLsum | Avg. Prediction Lengths |
61
+ |:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|
62
+ | 1.0 | 1.0113 | 45.2808 | 0.6201 | 0.4198 | 0.5927 | 0.5927 | 24.5581 |
63
 
64
  ### Framework versions
65
 
66
  - Transformers 4.31.0
67
  - Pytorch 2.0.1+cu118
68
  - Datasets 2.14.4
69
+ - Tokenizers 0.13.3