DunnBC22 commited on
Commit
817b858
1 Parent(s): 3b058e3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -7
README.md CHANGED
@@ -4,11 +4,13 @@ tags:
4
  model-index:
5
  - name: trocr-base-printed_license_plates_ocr
6
  results: []
 
 
 
 
 
7
  ---
8
 
9
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
- should probably proofread and complete it, then remove this comment. -->
11
-
12
  # trocr-base-printed_license_plates_ocr
13
 
14
  This model is a fine-tuned version of [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed) on an unknown dataset.
@@ -18,15 +20,17 @@ It achieves the following results on the evaluation set:
18
 
19
  ## Model description
20
 
21
- More information needed
 
 
22
 
23
  ## Intended uses & limitations
24
 
25
- More information needed
26
 
27
  ## Training and evaluation data
28
 
29
- More information needed
30
 
31
  ## Training procedure
32
 
@@ -54,4 +58,4 @@ The following hyperparameters were used during training:
54
  - Transformers 4.21.3
55
  - Pytorch 1.12.1
56
  - Datasets 2.4.0
57
- - Tokenizers 0.12.1
 
4
  model-index:
5
  - name: trocr-base-printed_license_plates_ocr
6
  results: []
7
+ language:
8
+ - en
9
+ metrics:
10
+ - cer
11
+ pipeline_tag: image-to-text
12
  ---
13
 
 
 
 
14
  # trocr-base-printed_license_plates_ocr
15
 
16
  This model is a fine-tuned version of [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed) on an unknown dataset.
 
20
 
21
  ## Model description
22
 
23
+ This model extracts text from image input (License Plates).
24
+
25
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Optical%20Character%20Recognition%20(OCR)/OCR%20License%20Plates/OCR_license_plate_text_recognition.ipynb
26
 
27
  ## Intended uses & limitations
28
 
29
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
30
 
31
  ## Training and evaluation data
32
 
33
+ Dataset Source: https://www.kaggle.com/datasets/nickyazdani/license-plate-text-recognition-dataset
34
 
35
  ## Training procedure
36
 
 
58
  - Transformers 4.21.3
59
  - Pytorch 1.12.1
60
  - Datasets 2.4.0
61
+ - Tokenizers 0.12.1