--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: van-base-Brain_Tumors_Image_Classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7918781725888325 language: - en pipeline_tag: image-classification ---

van-base-Brain_Tumors_Image_Classification

This model is a fine-tuned version of [Visual-Attention-Network/van-base](https://huggingface.co/Visual-Attention-Network/van-base). It achieves the following results on the evaluation set: - Loss: 1.7847 - Accuracy: 0.7919 - Weighted f1: 0.7588 - Micro f1: 0.7919 - Macro f1: 0.7665 - Weighted recall: 0.7919 - Micro recall: 0.7919 - Macro recall: 0.7865 - Weighted precision: 0.8505 - Micro precision: 0.7919 - Macro precision: 0.8675

Model Description

Click here for the code that I used to create this model. This project is part of a comparison of seventeen (17) transformers. Click here to see the README markdown file for the full project.

Intended Uses & Limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

Training & Evaluation Data

Brain Tumor Image Classification Dataset

Sample Images

Class Distribution of Training Dataset

Class Distribution of Evaluation Dataset

## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted F1 | Micro F1 | Macro F1 | Weighted Recall | Micro Recall | Macro Recall | Weighted Precision | Micro Precision | Macro Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 1.3357 | 1.0 | 180 | 1.5273 | 0.7183 | 0.6631 | 0.7183 | 0.6695 | 0.7183 | 0.7183 | 0.7058 | 0.8219 | 0.7183 | 0.8420 | | 1.3357 | 2.0 | 360 | 1.9359 | 0.7792 | 0.7314 | 0.7792 | 0.7411 | 0.7792 | 0.7792 | 0.7764 | 0.8467 | 0.7792 | 0.8636 | | 0.1229 | 3.0 | 540 | 1.7847 | 0.7919 | 0.7588 | 0.7919 | 0.7665 | 0.7919 | 0.7919 | 0.7865 | 0.8505 | 0.7919 | 0.8675 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3