DunnBC22 commited on
Commit
16f0e2e
1 Parent(s): 70c71bc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -8
README.md CHANGED
@@ -30,15 +30,15 @@ model-index:
30
  value: 0.9375
31
  - name: Recall
32
  type: recall
33
- value: 1.0
34
  - name: Precision
35
  type: precision
36
  value: 0.8823529411764706
 
 
 
37
  ---
38
 
39
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
- should probably proofread and complete it, then remove this comment. -->
41
-
42
  # vit-base-patch16-224-in21k_brain_tumor_diagnosis
43
 
44
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
@@ -51,15 +51,17 @@ It achieves the following results on the evaluation set:
51
 
52
  ## Model description
53
 
54
- More information needed
 
 
55
 
56
  ## Intended uses & limitations
57
 
58
- More information needed
59
 
60
  ## Training and evaluation data
61
 
62
- More information needed
63
 
64
  ## Training procedure
65
 
@@ -90,4 +92,4 @@ The following hyperparameters were used during training:
90
  - Transformers 4.25.1
91
  - Pytorch 1.12.1
92
  - Datasets 2.8.0
93
- - Tokenizers 0.12.1
 
30
  value: 0.9375
31
  - name: Recall
32
  type: recall
33
+ value: 1
34
  - name: Precision
35
  type: precision
36
  value: 0.8823529411764706
37
+ language:
38
+ - en
39
+ pipeline_tag: image-classification
40
  ---
41
 
 
 
 
42
  # vit-base-patch16-224-in21k_brain_tumor_diagnosis
43
 
44
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
 
51
 
52
  ## Model description
53
 
54
+ This is a binary classification model to distinguish between if the MRI images detect a brain tumor or not.
55
+
56
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Binary%20Classification/Brain%20Tumor%20MRI%20Images/brain_tumor_MRI_Images_ViT.ipynb
57
 
58
  ## Intended uses & limitations
59
 
60
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
61
 
62
  ## Training and evaluation data
63
 
64
+ Dataset Source: https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
65
 
66
  ## Training procedure
67
 
 
92
  - Transformers 4.25.1
93
  - Pytorch 1.12.1
94
  - Datasets 2.8.0
95
+ - Tokenizers 0.12.1