--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - recall - precision model-index: - name: vit-base-patch16-224-in21k_brain_tumor_diagnosis results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9019607843137255 - name: F1 type: f1 value: 0.912280701754386 - name: Recall type: recall value: 0.8666666666666667 - name: Precision type: precision value: 0.9629629629629629 --- # vit-base-patch16-224-in21k_brain_tumor_diagnosis This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2855 - Accuracy: 0.9020 - F1: 0.9123 - Recall: 0.8667 - Precision: 0.9630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.7101 | 1.0 | 13 | 0.3351 | 0.9412 | 0.9474 | 0.9 | 1.0 | | 0.7101 | 2.0 | 26 | 0.3078 | 0.9020 | 0.9231 | 1.0 | 0.8571 | | 0.7101 | 3.0 | 39 | 0.2591 | 0.9216 | 0.9375 | 1.0 | 0.8824 | | 0.7101 | 4.0 | 52 | 0.2702 | 0.9020 | 0.9123 | 0.8667 | 0.9630 | | 0.7101 | 5.0 | 65 | 0.2855 | 0.9020 | 0.9123 | 0.8667 | 0.9630 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.12.1