--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - recall - precision model-index: - name: vit-base-patch16-224-in21k_lung_and_colon_cancer results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9994 language: - en pipeline_tag: image-classification --- # vit-base-patch16-224-in21k_lung_and_colon_cancer This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k). It achieves the following results on the evaluation set: - Loss: 0.0016 - Accuracy: 0.9994 - Weighted f1: 0.9994 - Micro f1: 0.9994 - Macro f1: 0.9994 - Weighted recall: 0.9994 - Micro recall: 0.9994 - Macro recall: 0.9994 - Weighted precision: 0.9994 - Micro precision: 0.9994 - Macro precision: 0.9994 ## Model description This is a multiclass image classification model of lung and colon cancers. For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Lung%20%26%20Colon%20Cancer/Lung_and_colon_cancer_ViT.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://www.kaggle.com/datasets/andrewmvd/lung-and-colon-cancer-histopathological-images ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 0.0574 | 1.0 | 1250 | 0.0410 | 0.9864 | 0.9864 | 0.9864 | 0.9865 | 0.9864 | 0.9864 | 0.9864 | 0.9872 | 0.9864 | 0.9875 | | 0.0031 | 2.0 | 2500 | 0.0105 | 0.9972 | 0.9972 | 0.9972 | 0.9972 | 0.9972 | 0.9972 | 0.9973 | 0.9972 | 0.9972 | 0.9972 | | 0.0007 | 3.0 | 3750 | 0.0016 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1 - Datasets 2.5.2 - Tokenizers 0.12.1