DunnBC22 commited on
Commit
b0ff0a5
1 Parent(s): 0a2939a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -9
README.md CHANGED
@@ -3,29 +3,32 @@ license: apache-2.0
3
  base_model: hustvl/yolos-small
4
  tags:
5
  - generated_from_trainer
 
6
  model-index:
7
  - name: yolos-small-Axial_MRIs
8
  results: []
 
 
 
 
 
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
-
14
  # yolos-small-Axial_MRIs
15
 
16
- This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) on an unknown dataset.
17
 
18
  ## Model description
19
 
20
- More information needed
21
 
22
  ## Intended uses & limitations
23
 
24
- More information needed
25
 
26
  ## Training and evaluation data
27
 
28
- More information needed
29
 
30
  ## Training procedure
31
 
@@ -42,11 +45,24 @@ The following hyperparameters were used during training:
42
 
43
  ### Training results
44
 
45
-
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  ### Framework versions
48
 
49
  - Transformers 4.31.0
50
  - Pytorch 2.0.1+cu118
51
  - Datasets 2.14.3
52
- - Tokenizers 0.13.3
 
3
  base_model: hustvl/yolos-small
4
  tags:
5
  - generated_from_trainer
6
+ - medical
7
  model-index:
8
  - name: yolos-small-Axial_MRIs
9
  results: []
10
+ datasets:
11
+ - Francesco/axial-mri
12
+ language:
13
+ - en
14
+ pipeline_tag: object-detection
15
  ---
16
 
 
 
 
17
  # yolos-small-Axial_MRIs
18
 
19
+ This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small).
20
 
21
  ## Model description
22
 
23
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Object%20Detection/Axial%20MRIs/Axial_MRIs_Object_Detection_YOLOS.ipynb
24
 
25
  ## Intended uses & limitations
26
 
27
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
28
 
29
  ## Training and evaluation data
30
 
31
+ Dataset Source: https://huggingface.co/datasets/Francesco/axial-mri
32
 
33
  ## Training procedure
34
 
 
45
 
46
  ### Training results
47
 
48
+ | Metric Name | IoU | Area| maxDets | Metric Value |
49
+ |:-----:|:-----:|:-----:|:-----:|:-----:|
50
+ | Average Precision (AP) | IoU=0.50:0.95 | all | maxDets=100 | 0.284 |
51
+ | Average Precision (AP) | IoU=0.50 | all | maxDets=100 | 0.451 |
52
+ | Average Precision (AP) | IoU=0.75 | all | maxDets=100 | 0.351 |
53
+ | Average Precision (AP) | IoU=0.50:0.95 | small | maxDets=100 | 0.000 |
54
+ | Average Precision (AP) | IoU=0.50:0.95 | medium | maxDets=100 | 0.182 |
55
+ | Average Precision (AP) | IoU=0.50:0.95 | large | maxDets=100 | 0.663 |
56
+ | Average Recall (AR) | IoU=0.50:0.95 | all | maxDets=1 | 0.388 |
57
+ | Average Recall (AR) | IoU=0.50:0.95 | all | maxDets=10 | 0.524 |
58
+ | Average Recall (AR) | IoU=0.50:0.95 | all | maxDets=100 | 0.566 |
59
+ | Average Recall (AR) | IoU=0.50:0.95 | small | maxDets=100 | 0.000 |
60
+ | Average Recall (AR) | IoU=0.50:0.95 | medium | maxDets=100 | 0.502 |
61
+ | Average Recall (AR) | IoU=0.50:0.95 | large | maxDets=100 | 0.791 |
62
 
63
  ### Framework versions
64
 
65
  - Transformers 4.31.0
66
  - Pytorch 2.0.1+cu118
67
  - Datasets 2.14.3
68
+ - Tokenizers 0.13.3