DunnBC22 commited on
Commit
0f54206
1 Parent(s): 6064483

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -8
README.md CHANGED
@@ -3,31 +3,34 @@ license: apache-2.0
3
  base_model: hustvl/yolos-small
4
  tags:
5
  - generated_from_trainer
 
 
 
6
  datasets:
7
  - blood-cell-object-detection
8
  model-index:
9
  - name: yolos-small-Blood_Cell_Object_Detection
10
  results: []
 
 
 
11
  ---
12
 
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
  # yolos-small-Blood_Cell_Object_Detection
17
 
18
  This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) on the blood-cell-object-detection dataset.
19
 
20
  ## Model description
21
 
22
- More information needed
23
 
24
  ## Intended uses & limitations
25
 
26
- More information needed
27
 
28
  ## Training and evaluation data
29
 
30
- More information needed
31
 
32
  ## Training procedure
33
 
@@ -44,11 +47,24 @@ The following hyperparameters were used during training:
44
 
45
  ### Training results
46
 
47
-
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  ### Framework versions
50
 
51
  - Transformers 4.31.0
52
  - Pytorch 2.0.1+cu118
53
  - Datasets 2.14.3
54
- - Tokenizers 0.13.3
 
3
  base_model: hustvl/yolos-small
4
  tags:
5
  - generated_from_trainer
6
+ - Blood Cells
7
+ - biology
8
+ - medical
9
  datasets:
10
  - blood-cell-object-detection
11
  model-index:
12
  - name: yolos-small-Blood_Cell_Object_Detection
13
  results: []
14
+ language:
15
+ - en
16
+ pipeline_tag: object-detection
17
  ---
18
 
 
 
 
19
  # yolos-small-Blood_Cell_Object_Detection
20
 
21
  This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) on the blood-cell-object-detection dataset.
22
 
23
  ## Model description
24
 
25
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Object%20Detection/Blood%20Cell%20Object%20Detection/Blood_Cell_Object_Detection_YOLOS.ipynb
26
 
27
  ## Intended uses & limitations
28
 
29
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
30
 
31
  ## Training and evaluation data
32
 
33
+ Dataset Source: https://huggingface.co/datasets/keremberke/blood-cell-object-detection
34
 
35
  ## Training procedure
36
 
 
47
 
48
  ### Training results
49
 
50
+ | Metric Name | IoU | Area | maxDets | Metric Value |
51
+ |:-----:|:-----:|:-----:|:-----:|:-----:|
52
+ | Average Precision (AP) | IoU=0.50:0.95 | all | maxDets=100 | 0.344 |
53
+ | Average Precision (AP) | IoU=0.50 | all | maxDets=100 | 0.579 |
54
+ | Average Precision (AP) | IoU=0.75 | all | maxDets=100 | 0.374 |
55
+ | Average Precision (AP) | IoU=0.50:0.95 | small | maxDets=100 | 0.097 |
56
+ | Average Precision (AP) | IoU=0.50:0.95 | medium | maxDets=100 | 0.258 |
57
+ | Average Precision (AP) | IoU=0.50:0.95 | large | maxDets=100 | 0.224 |
58
+ | Average Recall (AR) | IoU=0.50:0.95 | all | maxDets=1 | 0.210 |
59
+ | Average Recall (AR) | IoU=0.50:0.95 | all | maxDets=10 | 0.376 |
60
+ | Average Recall (AR) | IoU=0.50:0.95 | all | maxDets=100 | 0.448 |
61
+ | Average Recall (AR) | IoU=0.50:0.95 | small | maxDets=100 | 0.108 |
62
+ | Average Recall (AR) | IoU=0.50:0.95 | medium | maxDets=100 | 0.375 |
63
+ | Average Recall (AR) | IoU=0.50:0.95 | large | maxDets=100 | 0.448 |
64
 
65
  ### Framework versions
66
 
67
  - Transformers 4.31.0
68
  - Pytorch 2.0.1+cu118
69
  - Datasets 2.14.3
70
+ - Tokenizers 0.13.3