DunnBC22 commited on
Commit
91db226
1 Parent(s): a8f9e5e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -9
README.md CHANGED
@@ -3,29 +3,31 @@ license: apache-2.0
3
  base_model: hustvl/yolos-small
4
  tags:
5
  - generated_from_trainer
 
 
6
  model-index:
7
  - name: yolos-small-Stomata_Cells
8
  results: []
 
 
 
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
-
14
  # yolos-small-Stomata_Cells
15
 
16
- This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) on an unknown dataset.
17
 
18
  ## Model description
19
 
20
- More information needed
21
 
22
  ## Intended uses & limitations
23
 
24
- More information needed
25
 
26
  ## Training and evaluation data
27
 
28
- More information needed
29
 
30
  ## Training procedure
31
 
@@ -42,11 +44,24 @@ The following hyperparameters were used during training:
42
 
43
  ### Training results
44
 
45
-
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  ### Framework versions
48
 
49
  - Transformers 4.31.0
50
  - Pytorch 2.0.1+cu118
51
  - Datasets 2.14.3
52
- - Tokenizers 0.13.3
 
3
  base_model: hustvl/yolos-small
4
  tags:
5
  - generated_from_trainer
6
+ - biology
7
+ - medical
8
  model-index:
9
  - name: yolos-small-Stomata_Cells
10
  results: []
11
+ language:
12
+ - en
13
+ pipeline_tag: object-detection
14
  ---
15
 
 
 
 
16
  # yolos-small-Stomata_Cells
17
 
18
+ This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small).
19
 
20
  ## Model description
21
 
22
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Object%20Detection/Stomata%20Cells/Stomata_Cells_Object_Detection_YOLOS.ipynb
23
 
24
  ## Intended uses & limitations
25
 
26
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
27
 
28
  ## Training and evaluation data
29
 
30
+ Dataset Source: https://huggingface.co/datasets/Francesco/stomata-cells
31
 
32
  ## Training procedure
33
 
 
44
 
45
  ### Training results
46
 
47
+ | Metric Name | IoU | Area| maxDets | Metric Value |
48
+ |:-----:|:-----:|:-----:|:-----:|:-----:|
49
+ | Average Precision (AP) | IoU=0.50:0.95 | all | maxDets=100 | 0.340 |
50
+ | Average Precision (AP) | IoU=0.50 | all | maxDets=100 | 0.571 |
51
+ | Average Precision (AP) | IoU=0.75 | all | maxDets=100 | 0.361 |
52
+ | Average Precision (AP) | IoU=0.50:0.95 | small | maxDets=100 | 0.155 |
53
+ | Average Precision (AP) | IoU=0.50:0.95 | medium | maxDets=100 | 0.220 |
54
+ | Average Precision (AP) | IoU=0.50:0.95 | large | maxDets=100 | 0.498 |
55
+ | Average Recall (AR) | IoU=0.50:0.95 | all | maxDets= 1 | 0.146 |
56
+ | Average Recall (AR) | IoU=0.50:0.95 | all | maxDets= 10 | 0.423 |
57
+ | Average Recall (AR) | IoU=0.50:0.95 | all | maxDets=100 | 0.547 |
58
+ | Average Recall (AR) | IoU=0.50:0.95 | small | maxDets=100 | 0.275 |
59
+ | Average Recall (AR) | IoU=0.50:0.95 | medium | maxDets=100 | 0.439 |
60
+ | Average Recall (AR) | IoU=0.50:0.95 | large | maxDets=100 | 0.764 |
61
 
62
  ### Framework versions
63
 
64
  - Transformers 4.31.0
65
  - Pytorch 2.0.1+cu118
66
  - Datasets 2.14.3
67
+ - Tokenizers 0.13.3