Update README.md
Browse files
README.md
CHANGED
@@ -3,29 +3,31 @@ license: apache-2.0
|
|
3 |
base_model: hustvl/yolos-small
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
model-index:
|
7 |
- name: yolos-small-Stomata_Cells
|
8 |
results: []
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
-
should probably proofread and complete it, then remove this comment. -->
|
13 |
-
|
14 |
# yolos-small-Stomata_Cells
|
15 |
|
16 |
-
This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)
|
17 |
|
18 |
## Model description
|
19 |
|
20 |
-
|
21 |
|
22 |
## Intended uses & limitations
|
23 |
|
24 |
-
|
25 |
|
26 |
## Training and evaluation data
|
27 |
|
28 |
-
|
29 |
|
30 |
## Training procedure
|
31 |
|
@@ -42,11 +44,24 @@ The following hyperparameters were used during training:
|
|
42 |
|
43 |
### Training results
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
### Framework versions
|
48 |
|
49 |
- Transformers 4.31.0
|
50 |
- Pytorch 2.0.1+cu118
|
51 |
- Datasets 2.14.3
|
52 |
-
- Tokenizers 0.13.3
|
|
|
3 |
base_model: hustvl/yolos-small
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
- biology
|
7 |
+
- medical
|
8 |
model-index:
|
9 |
- name: yolos-small-Stomata_Cells
|
10 |
results: []
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
pipeline_tag: object-detection
|
14 |
---
|
15 |
|
|
|
|
|
|
|
16 |
# yolos-small-Stomata_Cells
|
17 |
|
18 |
+
This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small).
|
19 |
|
20 |
## Model description
|
21 |
|
22 |
+
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Object%20Detection/Stomata%20Cells/Stomata_Cells_Object_Detection_YOLOS.ipynb
|
23 |
|
24 |
## Intended uses & limitations
|
25 |
|
26 |
+
This model is intended to demonstrate my ability to solve a complex problem using technology.
|
27 |
|
28 |
## Training and evaluation data
|
29 |
|
30 |
+
Dataset Source: https://huggingface.co/datasets/Francesco/stomata-cells
|
31 |
|
32 |
## Training procedure
|
33 |
|
|
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
+
| Metric Name | IoU | Area| maxDets | Metric Value |
|
48 |
+
|:-----:|:-----:|:-----:|:-----:|:-----:|
|
49 |
+
| Average Precision (AP) | IoU=0.50:0.95 | all | maxDets=100 | 0.340 |
|
50 |
+
| Average Precision (AP) | IoU=0.50 | all | maxDets=100 | 0.571 |
|
51 |
+
| Average Precision (AP) | IoU=0.75 | all | maxDets=100 | 0.361 |
|
52 |
+
| Average Precision (AP) | IoU=0.50:0.95 | small | maxDets=100 | 0.155 |
|
53 |
+
| Average Precision (AP) | IoU=0.50:0.95 | medium | maxDets=100 | 0.220 |
|
54 |
+
| Average Precision (AP) | IoU=0.50:0.95 | large | maxDets=100 | 0.498 |
|
55 |
+
| Average Recall (AR) | IoU=0.50:0.95 | all | maxDets= 1 | 0.146 |
|
56 |
+
| Average Recall (AR) | IoU=0.50:0.95 | all | maxDets= 10 | 0.423 |
|
57 |
+
| Average Recall (AR) | IoU=0.50:0.95 | all | maxDets=100 | 0.547 |
|
58 |
+
| Average Recall (AR) | IoU=0.50:0.95 | small | maxDets=100 | 0.275 |
|
59 |
+
| Average Recall (AR) | IoU=0.50:0.95 | medium | maxDets=100 | 0.439 |
|
60 |
+
| Average Recall (AR) | IoU=0.50:0.95 | large | maxDets=100 | 0.764 |
|
61 |
|
62 |
### Framework versions
|
63 |
|
64 |
- Transformers 4.31.0
|
65 |
- Pytorch 2.0.1+cu118
|
66 |
- Datasets 2.14.3
|
67 |
+
- Tokenizers 0.13.3
|