--- license: apache-2.0 base_model: hustvl/yolos-small tags: - generated_from_trainer - Wall Damage - Damage Detection model-index: - name: yolos-small-Wall_Damage results: [] datasets: - Francesco/wall-damage language: - en pipeline_tag: object-detection --- # yolos-small-Wall_Damage This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small). ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Object%20Detection/Trained%2C%20But%20to%20Standard/Wall%20Damage%20Object%20Detection/Wall_Damage_Object_Detection_YOLOS.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://huggingface.co/datasets/Francesco/wall-damage ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Metric Name | IoU | Area | maxDets | Metric Value | |:-----:|:-----:|:-----:|:-----:|:-----:| | Average Precision (AP) | IoU=0.50:0.95 | area= all | maxDets=100 | 0.241 | | Average Precision (AP) | IoU=0.50 | area= all | maxDets=100 | 0.400 | | Average Precision (AP) | IoU=0.75 | area= all | maxDets=100 | 0.231 | | Average Precision (AP) | IoU=0.50:0.95 | area= small | maxDets=100 | -1.000 | | Average Precision (AP) | IoU=0.50:0.95 | area=medium | maxDets=100 | -1.000 | | Average Precision (AP) | IoU=0.50:0.95 | area= large | maxDets=100 | 0.241 | | Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets= 1 | 0.488 | | Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets= 10 | 0.579 | | Average Recall (AR) | IoU=0.50:0.95 | area= all | maxDets=100 | 0.621 | | Average Recall (AR) | IoU=0.50:0.95 | area= small | maxDets=100 | -1.000 | | Average Recall (AR) | IoU=0.50:0.95 | area=medium | maxDets=100 | -1.000 | | Average Recall (AR) | IoU=0.50:0.95 | area= large | maxDets=100 | 0.621 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3