Update README.md
Browse files
README.md
CHANGED
@@ -3,31 +3,33 @@ license: apache-2.0
|
|
3 |
base_model: hustvl/yolos-tiny
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
datasets:
|
7 |
- hard-hat-detection
|
8 |
model-index:
|
9 |
- name: yolos-tiny-Hard_Hat_Detection
|
10 |
results: []
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
-
should probably proofread and complete it, then remove this comment. -->
|
15 |
-
|
16 |
# yolos-tiny-Hard_Hat_Detection
|
17 |
|
18 |
This model is a fine-tuned version of [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny) on the hard-hat-detection dataset.
|
19 |
|
20 |
## Model description
|
21 |
|
22 |
-
|
23 |
|
24 |
## Intended uses & limitations
|
25 |
|
26 |
-
|
27 |
|
28 |
## Training and evaluation data
|
29 |
|
30 |
-
|
31 |
|
32 |
## Training procedure
|
33 |
|
@@ -44,11 +46,24 @@ The following hyperparameters were used during training:
|
|
44 |
|
45 |
### Training results
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
### Framework versions
|
50 |
|
51 |
- Transformers 4.31.0
|
52 |
- Pytorch 2.0.1+cu118
|
53 |
- Datasets 2.14.3
|
54 |
-
- Tokenizers 0.13.3
|
|
|
3 |
base_model: hustvl/yolos-tiny
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
- Workplace Safety
|
7 |
+
- Safety
|
8 |
datasets:
|
9 |
- hard-hat-detection
|
10 |
model-index:
|
11 |
- name: yolos-tiny-Hard_Hat_Detection
|
12 |
results: []
|
13 |
+
language:
|
14 |
+
- en
|
15 |
+
pipeline_tag: object-detection
|
16 |
---
|
17 |
|
|
|
|
|
|
|
18 |
# yolos-tiny-Hard_Hat_Detection
|
19 |
|
20 |
This model is a fine-tuned version of [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny) on the hard-hat-detection dataset.
|
21 |
|
22 |
## Model description
|
23 |
|
24 |
+
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Object%20Detection/Hard%20Hat%20Detection/Hard_Hat_Object_Detection_YOLOS.ipynb
|
25 |
|
26 |
## Intended uses & limitations
|
27 |
|
28 |
+
This model is intended to demonstrate my ability to solve a complex problem using technology.
|
29 |
|
30 |
## Training and evaluation data
|
31 |
|
32 |
+
Dataset Source: https://huggingface.co/datasets/keremberke/hard-hat-detection
|
33 |
|
34 |
## Training procedure
|
35 |
|
|
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
+
| Metric Name | IoU | Area| maxDets | Metric Value |
|
50 |
+
|:-----:|:-----:|:-----:|:-----:|:-----:|
|
51 |
+
| Average Precision (AP)| IoU=0.50:0.95 | all | maxDets=100 | 0.346 |
|
52 |
+
| Average Precision (AP)| IoU=0.50 | all | maxDets=100 | 0.747 |
|
53 |
+
| Average Precision (AP)| IoU=0.75 | all | maxDets=100 | 0.275 |
|
54 |
+
| Average Precision (AP)| IoU=0.50:0.95 | small | maxDets=100 | 0.128 |
|
55 |
+
| Average Precision (AP)| IoU=0.50:0.95 | medium | maxDets=100 | 0.343 |
|
56 |
+
| Average Precision (AP)| IoU=0.50:0.95 | large | maxDets=100 | 0.521 |
|
57 |
+
| Average Recall (AR)| IoU=0.50:0.95 | all | maxDets=1 | 0.188 |
|
58 |
+
| Average Recall (AR)| IoU=0.50:0.95 | all | maxDets=10 | 0.484 |
|
59 |
+
| Average Recall (AR)| IoU=0.50:0.95 | all | maxDets=100 | 0.558 |
|
60 |
+
| Average Recall (AR)| IoU=0.50:0.95 | small | maxDets=100 | 0.320 |
|
61 |
+
| Average Recall (AR)| IoU=0.50:0.95 | medium | maxDets=100 | 0.538 |
|
62 |
+
| Average Recall (AR)| IoU=0.50:0.95 | large | maxDets=100 | 0.743 |
|
63 |
|
64 |
### Framework versions
|
65 |
|
66 |
- Transformers 4.31.0
|
67 |
- Pytorch 2.0.1+cu118
|
68 |
- Datasets 2.14.3
|
69 |
+
- Tokenizers 0.13.3
|