drAbreu commited on
Commit
ed1aa06
1 Parent(s): be86f5a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - source_data
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: SourceData_GP-CHEM-ROLES_v_1-0-0_BioLinkBERT_large
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: source_data
19
+ type: source_data
20
+ args: ROLES_MULTI
21
+ metrics:
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.9572859572859573
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.9649457039436083
28
+ - name: F1
29
+ type: f1
30
+ value: 0.9611005692599621
31
+ ---
32
+
33
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
34
+ should probably proofread and complete it, then remove this comment. -->
35
+
36
+ # SourceData_GP-CHEM-ROLES_v_1-0-0_BioLinkBERT_large
37
+
38
+ This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the source_data dataset.
39
+ It achieves the following results on the evaluation set:
40
+ - Loss: 0.0100
41
+ - Accuracy Score: 0.9975
42
+ - Precision: 0.9573
43
+ - Recall: 0.9649
44
+ - F1: 0.9611
45
+
46
+ ## Model description
47
+
48
+ More information needed
49
+
50
+ ## Intended uses & limitations
51
+
52
+ More information needed
53
+
54
+ ## Training and evaluation data
55
+
56
+ More information needed
57
+
58
+ ## Training procedure
59
+
60
+ ### Training hyperparameters
61
+
62
+ The following hyperparameters were used during training:
63
+ - learning_rate: 1.5e-05
64
+ - train_batch_size: 32
65
+ - eval_batch_size: 256
66
+ - seed: 42
67
+ - gradient_accumulation_steps: 2
68
+ - total_train_batch_size: 64
69
+ - optimizer: Adafactor
70
+ - lr_scheduler_type: linear
71
+ - num_epochs: 1.0
72
+
73
+ ### Training results
74
+
75
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 |
76
+ |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
77
+ | 0.0068 | 1.0 | 863 | 0.0100 | 0.9975 | 0.9573 | 0.9649 | 0.9611 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.20.1
83
+ - Pytorch 1.11.0a0+bfe5ad2
84
+ - Datasets 2.10.1
85
+ - Tokenizers 0.12.1