File size: 2,046 Bytes
1edab6f
 
 
 
 
2c6fa4c
1edab6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- EMBO/SourceData
metrics:
- precision
- recall
- f1
model-index:
- name: SourceData_GP-CHEM-ROLES_v_1-0-2_BioLinkBERT_large
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: source_data
      type: source_data
      args: ROLES_MULTI
    metrics:
    - name: Precision
      type: precision
      value: 0.972972972972973
    - name: Recall
      type: recall
      value: 0.9789864029666254
    - name: F1
      type: f1
      value: 0.9759704251386322
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SourceData_GP-CHEM-ROLES_v_1-0-2_BioLinkBERT_large

This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the source_data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0055
- Accuracy Score: 0.9985
- Precision: 0.9730
- Recall: 0.9790
- F1: 0.9760

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 32
- eval_batch_size: 256
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adafactor
- lr_scheduler_type: linear
- num_epochs: 1.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:|
| 0.0097        | 1.0   | 942  | 0.0055          | 0.9985         | 0.9730    | 0.9790 | 0.9760 |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.11.0a0+bfe5ad2
- Datasets 2.10.1
- Tokenizers 0.12.1