File size: 2,507 Bytes
c8a5bca
8baa81a
c8a5bca
8baa81a
 
 
 
 
 
c8a5bca
8baa81a
 
 
 
 
 
 
9ba33b2
8baa81a
 
7a8c111
db55372
7a8c111
8baa81a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
language: en
license: apache-2.0
datasets:
- ESGBERT/action_500
tags:
- ESG
- environmental
- action
---

# Model Card for EnvironmentalBERT-action

## Model Description

As an extension to [this paper](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4622514), this is the EnvironmentalBERT-action language model. A language model that is trained to better classify action texts in the ESG domain.

Using the [EnvironmentalBERT-base](https://huggingface.co/ESGBERT/EnvironmentalBERT-base) model as a starting point, the EnvironmentalBERT-action Language Model is additionally fine-trained on a dataset with 500 sentences to detect action text samples. The underlying dataset is comparatively small, so if you would like to contribute to it, feel free to reach out. :)

## How to Get Started With the Model

It is highly recommended to first classify a sentence to be "environmental" or not with the [EnvironmentalBERT-environmental](https://huggingface.co/ESGBERT/EnvironmentalBERT-environmental) model before classifying whether it is "action" or not. This intersection allows us to build a targeted insight into whether the sentence displays an "environmental action".

You can use the model with a pipeline for text classification:

```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
 
tokenizer_name = "ESGBERT/EnvironmentalBERT-action"
model_name = "ESGBERT/EnvironmentalBERT-action"
 
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, max_len=512)
 
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer) # set device=0 to use GPU
 
# See https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.pipeline
print(pipe("We are actively working to reduce our CO2 emissions by planting trees in 25 countries.", padding=True, truncation=True))
```

## More details to the base models can be found in this paper

While this dataset does not originate from the paper, it is a extension of it and the base models are described in it.

```bibtex
@article{Schimanski23ESGBERT,
    title={{Bridiging the Gap in ESG Measurement: Using NLP to Quantify Environmental, Social, and Governance Communication}},
    author={Tobias Schimanski and Andrin Reding and Nico Reding and Julia Bingler and Mathias Kraus and Markus Leippold},
    year={2023},
    journal={Available on SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4622514},
}
```