File size: 1,265 Bytes
d225a2f
 
 
 
 
 
4058e1b
 
d225a2f
 
 
 
 
09a78be
d225a2f
09a78be
d225a2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
## Bert-base-uncased for Android-Ios Question Classification

**Code**: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/EastHShin/Android-Ios-Classification-Workspace)
<br>
**Android-Ios-Classification DEMO**: [Ainize Endpoint](https://main-android-ios-classification-east-h-shin.endpoint.ainize.ai/)
<br>
**Demo web Code**: [Github](https://github.com/EastHShin/Android-Ios-Classification)
<br>
**Android-Ios-Classification API**: [Ainize API](https://ainize.ai/EastHShin/Android-Ios-Classification)
<br>
<br>
## Overview
**Language model**: bert-base-cased
<br>
**Language**: English
<br>
**Training data**: Question classification Android-Ios dataset from [Kaggle](https://www.kaggle.com/xhlulu/question-classification-android-or-ios)


## Usage

```
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline

model_path = "EasthShin/Android_Ios_Classification"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)

classifier = pipeline('text-classification', model=model_path, tokenizer=tokenizer)

question = "I bought goodnote in Appstore"

result = dict()
result[0] = classifier(question)[0]
```