File size: 1,265 Bytes
d225a2f 4058e1b d225a2f 09a78be d225a2f 09a78be d225a2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
## Bert-base-uncased for Android-Ios Question Classification
**Code**: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/EastHShin/Android-Ios-Classification-Workspace)
<br>
**Android-Ios-Classification DEMO**: [Ainize Endpoint](https://main-android-ios-classification-east-h-shin.endpoint.ainize.ai/)
<br>
**Demo web Code**: [Github](https://github.com/EastHShin/Android-Ios-Classification)
<br>
**Android-Ios-Classification API**: [Ainize API](https://ainize.ai/EastHShin/Android-Ios-Classification)
<br>
<br>
## Overview
**Language model**: bert-base-cased
<br>
**Language**: English
<br>
**Training data**: Question classification Android-Ios dataset from [Kaggle](https://www.kaggle.com/xhlulu/question-classification-android-or-ios)
## Usage
```
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
model_path = "EasthShin/Android_Ios_Classification"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
classifier = pipeline('text-classification', model=model_path, tokenizer=tokenizer)
question = "I bought goodnote in Appstore"
result = dict()
result[0] = classifier(question)[0]
``` |