Text Generation
Transformers
Safetensors
Korean
llama
conversational
text-generation-inference
Inference Endpoints
File size: 3,842 Bytes
5ec4f33
 
35798fa
5ec4f33
 
35798fa
cc61ae3
5ec4f33
35798fa
 
 
 
5ec4f33
 
 
 
35798fa
5ec4f33
 
 
cc61ae3
35798fa
cc61ae3
 
5ec4f33
35798fa
 
 
 
 
 
 
 
 
 
5ec4f33
 
 
35798fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ec4f33
 
 
76fafe2
3ac779b
a7f6bde
 
 
 
 
 
 
3ac779b
35798fa
 
 
5ec4f33
3ac779b
 
 
5ec4f33
35798fa
5ec4f33
35798fa
5ec4f33
 
 
 
 
35798fa
5ec4f33
35798fa
5ec4f33
 
 
35798fa
 
 
 
5ec4f33
 
35798fa
 
 
 
 
 
 
 
5ec4f33
 
35798fa
 
 
 
5ec4f33
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
tags:
    - text-generation
license: cc-by-nc-sa-4.0
language:
    - ko
base_model: yanolja/KoSOLAR-10.7B-v0.1
pipeline_tag: text-generation
datasets:
    - mncai/orca_dpo_pairs_ko
    - Ja-ck/Orca-DPO-Pairs-KO
    - We-Want-GPU/Yi-Ko-DPO-Orca-DPO-Pairs
---

# **DataVortexS-10.7B-dpo-v0.1**

<img src="./DataVortex.png" alt="DataVortex" style="height: 8em;">

## **Model Details**

### **Base Model**

[yanolja/KoSOLAR-10.7B-v0.1](https://huggingface.co/yanolja/KoSOLAR-10.7B-v0.1) _(Tokenizer Issue Fixed Version)_

### **Trained On**

-   **OS**: Ubuntu 20.04
-   **GPU**: H100 80GB 2ea
-   **transformers**: v4.36.2

### **Dataset**

-   [mncai/orca_dpo_pairs_ko](https://huggingface.co/datasets/mncai/orca_dpo_pairs_ko)
-   [Ja-ck/Orca-DPO-Pairs-KO](https://huggingface.co/datasets/Ja-ck/Orca-DPO-Pairs-KO)
-   [We-Want-GPU/Yi-Ko-DPO-Orca-DPO-Pairs](https://huggingface.co/datasets/We-Want-GPU/Yi-Ko-DPO-Orca-DPO-Pairs)

### **Instruction format**

It follows **Alpaca** format.

E.g.

```python
text = """\
당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€.

### User:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?

### Assistant:
λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€.

### User:
μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?
"""
```

## **Model Benchmark**

### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)**

| Task             |        0-shot |         5-shot |      10-shot |        50-shot |
| :--------------- | ------------: | -------------: | -----------: | -------------: |
| kobest_boolq     |      0.334282 |       0.891367 |     0.896755 |       0.884441 |
| kobest_copa      |      0.697763 |       0.716762 |     0.724769 |       0.751746 |
| kobest_hellaswag |      0.432047 |       0.458301 |     0.443993 |       0.458232 |
| kobest_sentineg  |       0.49353 |       0.954657 |     0.964735 |       0.949606 |
| **Average**      | **0.4894055** | **0.75527175** | **0.757563** | **0.76100625** |

### **[Ko-LLM-Leaderboard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)**

On Benchmarking ...

| Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| ------: | -----: | -----------: | ------: | ------------: | --------------: |
|       0 |      0 |            0 |       0 |             0 |               0 |

## **Implementation Code**

This model contains the chat_template instruction format.  
You can use the code below.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v0.1")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v0.1")

messages = [
    {"role": "system", "content": "당신은 μ‚¬λžŒλ“€μ΄ 정보λ₯Ό 찾을 수 μžˆλ„λ‘ λ„μ™€μ£ΌλŠ” 인곡지λŠ₯ λΉ„μ„œμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μ•Ό?"},
    {"role": "assistant", "content": "λŒ€ν•œλ―Όκ΅­μ˜ μˆ˜λ„λŠ” μ„œμšΈμž…λ‹ˆλ‹€."},
    {"role": "user", "content": "μ„œμšΈ μΈκ΅¬λŠ” 총 λͺ‡ λͺ…이야?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```

## **License**

The model is licensed under the [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license.

<div align="center">
    <a href="https://edentns.com/">
        <img src="./Logo.png" alt="Logo" style="height: 3em;">
    </a>
</div>