Edresson commited on
Commit
9abe775
1 Parent(s): a208bf7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -51
README.md CHANGED
@@ -31,65 +31,21 @@ model-index:
31
  This a the demonstration of a fine-tuned Wav2vec model for Portuguese using the following [CORAA dataset](https://github.com/nilc-nlp/CORAA)
32
 
33
 
34
- ## Imports and dependencies
35
 
 
36
 
37
  ```python
38
- %%capture
39
- !pip install datasets
40
- !pip install jiwer
41
- !pip install torchaudio
42
- !pip install transformers
43
- !pip install soundfile
44
- ```
45
-
46
-
47
- ```python
48
- import torchaudio
49
- from datasets import load_dataset, load_metric
50
- from transformers import (
51
- Wav2Vec2ForCTC,
52
- Wav2Vec2Processor,
53
- )
54
- import torch
55
- import re
56
- import sys
57
- ```
58
-
59
- ## Preparation
60
-
61
-
62
- ```python
63
- chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605
64
- wer = load_metric("wer")
65
- device = "cuda"
66
- ```
67
 
68
- ```python
69
- model_name = 'Edresson/wav2vec2-large-xlsr-coraa-portuguese'
70
- model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
71
- processor = Wav2Vec2Processor.from_pretrained(model_name)
72
- ```
73
 
74
- ```python
75
- def map_to_pred(batch):
76
- features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
77
- input_values = features.input_values.to(device)
78
- attention_mask = features.attention_mask.to(device)
79
- with torch.no_grad():
80
- logits = model(input_values, attention_mask=attention_mask).logits
81
- pred_ids = torch.argmax(logits, dim=-1)
82
- batch["predicted"] = processor.batch_decode(pred_ids)
83
- batch["predicted"] = [pred.lower() for pred in batch["predicted"]]
84
- batch["target"] = batch["sentence"]
85
- return batch
86
  ```
87
-
88
- ## Tests
89
-
90
  For the results consult the [CORAA article](https://arxiv.org/abs/2110.15731)
91
 
92
- ### Example with Common Voice
93
 
94
 
95
  ```python
 
31
  This a the demonstration of a fine-tuned Wav2vec model for Portuguese using the following [CORAA dataset](https://github.com/nilc-nlp/CORAA)
32
 
33
 
 
34
 
35
+ # Use this model
36
 
37
  ```python
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
+ from transformers import AutoTokenizer, Wav2Vec2ForCTC
40
+
41
+ tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-xlsr-coraa-portuguese")
 
 
42
 
43
+ model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-xlsr-coraa-portuguese")
 
 
 
 
 
 
 
 
 
 
 
44
  ```
45
+ # Results
 
 
46
  For the results consult the [CORAA article](https://arxiv.org/abs/2110.15731)
47
 
48
+ # Example test with Common Voice Dataset
49
 
50
 
51
  ```python