Upload folder using huggingface_hub
Browse files- README.md +202 -3
- adapter_config.json +33 -0
- adapter_model.safetensors +3 -0
- config.json +32 -0
- export-lora.cpp +474 -0
- generation_config.json +7 -0
- ggml-model-f16.gguf +0 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +347 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +59 -0
- tokenizer.json +0 -0
- tokenizer_config.json +312 -0
- trainer_state.json +173 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,202 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: stabilityai/stablelm-2-1_6b-chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.2.dev0
|
adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "stabilityai/stablelm-2-1_6b-chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 8,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 16,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"v_proj",
|
24 |
+
"o_proj",
|
25 |
+
"up_proj",
|
26 |
+
"gate_proj",
|
27 |
+
"k_proj",
|
28 |
+
"q_proj"
|
29 |
+
],
|
30 |
+
"task_type": "CAUSAL_LM",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf33eeb42b50f5d32145b207fefecf05d46a6adcf248d64ab5e3afc2475ada48
|
3 |
+
size 48797072
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "D:/Vega/training/stablelm-2-1_6b-chat/",
|
3 |
+
"architectures": [
|
4 |
+
"StableLmForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 100257,
|
8 |
+
"eos_token_id": 100257,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_dropout": 0.0,
|
11 |
+
"hidden_size": 2048,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 5632,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 4096,
|
16 |
+
"model_type": "stablelm",
|
17 |
+
"num_attention_heads": 32,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"num_key_value_heads": 32,
|
20 |
+
"partial_rotary_factor": 0.25,
|
21 |
+
"qk_layernorm": false,
|
22 |
+
"rope_scaling": null,
|
23 |
+
"rope_theta": 10000,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.41.0",
|
27 |
+
"use_cache": true,
|
28 |
+
"use_parallel_residual": false,
|
29 |
+
"use_qkv_bias": true,
|
30 |
+
"vocab_size": 100352,
|
31 |
+
"rms_norm_eps": 1e-5
|
32 |
+
}
|
export-lora.cpp
ADDED
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#include "common.h"
|
3 |
+
#include "ggml.h"
|
4 |
+
#include "ggml-alloc.h"
|
5 |
+
|
6 |
+
#include <vector>
|
7 |
+
#include <string>
|
8 |
+
#include <thread>
|
9 |
+
|
10 |
+
static const size_t tensor_alignment = 32;
|
11 |
+
|
12 |
+
struct lora_info {
|
13 |
+
std::string filename;
|
14 |
+
float scale;
|
15 |
+
};
|
16 |
+
|
17 |
+
struct export_lora_params {
|
18 |
+
std::string fn_model_base;
|
19 |
+
std::string fn_model_out;
|
20 |
+
std::vector<struct lora_info> lora;
|
21 |
+
int n_threads;
|
22 |
+
};
|
23 |
+
|
24 |
+
struct lora_data {
|
25 |
+
struct lora_info info;
|
26 |
+
std::vector<uint8_t> data;
|
27 |
+
struct ggml_context * ctx;
|
28 |
+
|
29 |
+
uint32_t lora_r;
|
30 |
+
uint32_t lora_alpha;
|
31 |
+
};
|
32 |
+
|
33 |
+
struct llama_file {
|
34 |
+
// use FILE * so we don't have to re-open the file to mmap
|
35 |
+
FILE * fp;
|
36 |
+
size_t size;
|
37 |
+
|
38 |
+
llama_file(const char * fname, const char * mode) {
|
39 |
+
fp = std::fopen(fname, mode);
|
40 |
+
if (fp == NULL) {
|
41 |
+
size = 0;
|
42 |
+
} else {
|
43 |
+
seek(0, SEEK_END);
|
44 |
+
size = tell();
|
45 |
+
seek(0, SEEK_SET);
|
46 |
+
}
|
47 |
+
}
|
48 |
+
|
49 |
+
size_t tell() const {
|
50 |
+
#ifdef _WIN32
|
51 |
+
__int64 ret = _ftelli64(fp);
|
52 |
+
#else
|
53 |
+
long ret = std::ftell(fp);
|
54 |
+
#endif
|
55 |
+
GGML_ASSERT(ret != -1); // this really shouldn't fail
|
56 |
+
return (size_t) ret;
|
57 |
+
}
|
58 |
+
|
59 |
+
void seek(size_t offset, int whence) {
|
60 |
+
#ifdef _WIN32
|
61 |
+
int ret = _fseeki64(fp, (__int64) offset, whence);
|
62 |
+
#else
|
63 |
+
int ret = std::fseek(fp, (long) offset, whence);
|
64 |
+
#endif
|
65 |
+
GGML_ASSERT(ret == 0); // same
|
66 |
+
}
|
67 |
+
|
68 |
+
void read_raw(void * ptr, size_t size) {
|
69 |
+
if (size == 0) {
|
70 |
+
return;
|
71 |
+
}
|
72 |
+
errno = 0;
|
73 |
+
std::size_t ret = std::fread(ptr, size, 1, fp);
|
74 |
+
if (ferror(fp)) {
|
75 |
+
die_fmt("read error: %s", strerror(errno));
|
76 |
+
}
|
77 |
+
if (ret != 1) {
|
78 |
+
die("unexpectedly reached end of file");
|
79 |
+
}
|
80 |
+
}
|
81 |
+
|
82 |
+
std::uint32_t read_u32() {
|
83 |
+
std::uint32_t ret;
|
84 |
+
read_raw(&ret, sizeof(ret));
|
85 |
+
return ret;
|
86 |
+
}
|
87 |
+
|
88 |
+
std::string read_string(std::uint32_t len) {
|
89 |
+
std::vector<char> chars(len);
|
90 |
+
read_raw(chars.data(), len);
|
91 |
+
return std::string(chars.data(), len);
|
92 |
+
}
|
93 |
+
|
94 |
+
void write_raw(const void * ptr, size_t size) {
|
95 |
+
if (size == 0) {
|
96 |
+
return;
|
97 |
+
}
|
98 |
+
errno = 0;
|
99 |
+
size_t ret = std::fwrite(ptr, size, 1, fp);
|
100 |
+
if (ret != 1) {
|
101 |
+
die_fmt("write error: %s", strerror(errno));
|
102 |
+
}
|
103 |
+
}
|
104 |
+
|
105 |
+
void write_u32(std::uint32_t val) {
|
106 |
+
write_raw(&val, sizeof(val));
|
107 |
+
}
|
108 |
+
|
109 |
+
bool eof() {
|
110 |
+
return tell() >= size;
|
111 |
+
}
|
112 |
+
|
113 |
+
~llama_file() {
|
114 |
+
if (fp) {
|
115 |
+
std::fclose(fp);
|
116 |
+
}
|
117 |
+
}
|
118 |
+
};
|
119 |
+
|
120 |
+
static struct export_lora_params get_default_export_lora_params() {
|
121 |
+
struct export_lora_params result;
|
122 |
+
result.fn_model_base = "";
|
123 |
+
result.fn_model_out = "";
|
124 |
+
result.n_threads = GGML_DEFAULT_N_THREADS;
|
125 |
+
return result;
|
126 |
+
}
|
127 |
+
|
128 |
+
static void export_lora_print_usage(int /*argc*/, char ** argv, const struct export_lora_params * params) {
|
129 |
+
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
130 |
+
fprintf(stderr, "\n");
|
131 |
+
fprintf(stderr, "options:\n");
|
132 |
+
fprintf(stderr, " -h, --help show this help message and exit\n");
|
133 |
+
fprintf(stderr, " -m FNAME, --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base.c_str());
|
134 |
+
fprintf(stderr, " -o FNAME, --model-out FNAME path to save exported model (default '%s')\n", params->fn_model_out.c_str());
|
135 |
+
fprintf(stderr, " -l FNAME, --lora FNAME apply LoRA adapter\n");
|
136 |
+
fprintf(stderr, " -s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S\n");
|
137 |
+
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params->n_threads);
|
138 |
+
}
|
139 |
+
|
140 |
+
static bool export_lora_params_parse(int argc, char ** argv, struct export_lora_params * params) {
|
141 |
+
bool invalid_param = false;
|
142 |
+
std::string arg;
|
143 |
+
struct export_lora_params default_params = get_default_export_lora_params();
|
144 |
+
const std::string arg_prefix = "--";
|
145 |
+
|
146 |
+
for (int i = 1; i < argc; i++) {
|
147 |
+
arg = argv[i];
|
148 |
+
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
149 |
+
std::replace(arg.begin(), arg.end(), '_', '-');
|
150 |
+
}
|
151 |
+
|
152 |
+
if (arg == "-m" || arg == "--model-base") {
|
153 |
+
if (++i >= argc) {
|
154 |
+
invalid_param = true;
|
155 |
+
break;
|
156 |
+
}
|
157 |
+
params->fn_model_base = argv[i];
|
158 |
+
} else if (arg == "-o" || arg == "--model-out") {
|
159 |
+
if (++i >= argc) {
|
160 |
+
invalid_param = true;
|
161 |
+
break;
|
162 |
+
}
|
163 |
+
params->fn_model_out = argv[i];
|
164 |
+
} else if (arg == "-l" || arg == "--lora") {
|
165 |
+
if (++i >= argc) {
|
166 |
+
invalid_param = true;
|
167 |
+
break;
|
168 |
+
}
|
169 |
+
struct lora_info lora;
|
170 |
+
lora.filename = argv[i];
|
171 |
+
lora.scale = 1.0f;
|
172 |
+
params->lora.push_back(lora);
|
173 |
+
} else if (arg == "-s" || arg == "--lora-scaled") {
|
174 |
+
if (++i >= argc) {
|
175 |
+
invalid_param = true;
|
176 |
+
break;
|
177 |
+
}
|
178 |
+
struct lora_info lora;
|
179 |
+
lora.filename = argv[i];
|
180 |
+
if (++i >= argc) {
|
181 |
+
invalid_param = true;
|
182 |
+
break;
|
183 |
+
}
|
184 |
+
lora.scale = std::stof(argv[i]);
|
185 |
+
params->lora.push_back(lora);
|
186 |
+
} else if (arg == "-t" || arg == "--threads") {
|
187 |
+
if (++i >= argc) {
|
188 |
+
invalid_param = true;
|
189 |
+
break;
|
190 |
+
}
|
191 |
+
params->n_threads = std::stoi(argv[i]);
|
192 |
+
if (params->n_threads <= 0) {
|
193 |
+
params->n_threads = std::thread::hardware_concurrency();
|
194 |
+
}
|
195 |
+
} else {
|
196 |
+
fprintf(stderr, "error: unknown argument: '%s'\n", arg.c_str());
|
197 |
+
export_lora_print_usage(argc, argv, &default_params);
|
198 |
+
exit(1);
|
199 |
+
}
|
200 |
+
}
|
201 |
+
|
202 |
+
if (params->fn_model_base == default_params.fn_model_base) {
|
203 |
+
fprintf(stderr, "error: please specify a filename for model-base.\n");
|
204 |
+
export_lora_print_usage(argc, argv, &default_params);
|
205 |
+
exit(1);
|
206 |
+
}
|
207 |
+
if (params->fn_model_out == default_params.fn_model_out) {
|
208 |
+
fprintf(stderr, "error: please specify a filename for model-out.\n");
|
209 |
+
export_lora_print_usage(argc, argv, &default_params);
|
210 |
+
exit(1);
|
211 |
+
}
|
212 |
+
if (invalid_param) {
|
213 |
+
fprintf(stderr, "error: invalid parameter for argument: '%s'\n", arg.c_str());
|
214 |
+
export_lora_print_usage(argc, argv, &default_params);
|
215 |
+
exit(1);
|
216 |
+
}
|
217 |
+
return true;
|
218 |
+
}
|
219 |
+
|
220 |
+
static void free_lora(struct lora_data * lora) {
|
221 |
+
if (lora->ctx != NULL) {
|
222 |
+
ggml_free(lora->ctx);
|
223 |
+
}
|
224 |
+
delete lora;
|
225 |
+
}
|
226 |
+
|
227 |
+
static struct lora_data * load_lora(struct lora_info * info) {
|
228 |
+
struct lora_data * result = new struct lora_data;
|
229 |
+
result->info = *info;
|
230 |
+
result->ctx = NULL;
|
231 |
+
result->lora_r = 1;
|
232 |
+
result->lora_alpha = 1;
|
233 |
+
|
234 |
+
struct llama_file file(info->filename.c_str(), "rb");
|
235 |
+
if (file.fp == NULL) {
|
236 |
+
fprintf(stderr, "warning: Could not open lora adapter '%s'. Ignoring this adapter.\n",
|
237 |
+
info->filename.c_str());
|
238 |
+
free_lora(result);
|
239 |
+
return NULL;
|
240 |
+
}
|
241 |
+
|
242 |
+
struct ggml_init_params params_ggml;
|
243 |
+
params_ggml.mem_size = ggml_tensor_overhead() * GGML_MAX_NODES;
|
244 |
+
params_ggml.mem_buffer = NULL;
|
245 |
+
params_ggml.no_alloc = true;
|
246 |
+
result->ctx = ggml_init(params_ggml);
|
247 |
+
|
248 |
+
uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla'
|
249 |
+
uint32_t magic = file.read_u32();
|
250 |
+
if (magic != LLAMA_FILE_MAGIC_LORA) {
|
251 |
+
die_fmt("unexpected lora header file magic in '%s'", info->filename.c_str());
|
252 |
+
}
|
253 |
+
uint32_t version = file.read_u32();
|
254 |
+
if (version != 1) {
|
255 |
+
die_fmt("unexpected lora file version '%u' in '%s'", (unsigned) version, info->filename.c_str());
|
256 |
+
}
|
257 |
+
result->lora_r = file.read_u32();
|
258 |
+
result->lora_alpha = file.read_u32();
|
259 |
+
// read tensor infos from file
|
260 |
+
std::vector<char> name_buf;
|
261 |
+
std::vector<struct ggml_tensor *> tensors;
|
262 |
+
std::vector<size_t> tensors_offset;
|
263 |
+
size_t total_nbytes_pad = 0;
|
264 |
+
while(!file.eof()) {
|
265 |
+
int64_t ne[4] = {1,1,1,1};
|
266 |
+
uint32_t n_dims = file.read_u32();
|
267 |
+
uint32_t namelen = file.read_u32();
|
268 |
+
uint32_t type = file.read_u32();
|
269 |
+
for (uint32_t k = 0; k < n_dims; ++k) {
|
270 |
+
ne[k] = (int64_t)file.read_u32();
|
271 |
+
}
|
272 |
+
name_buf.clear();
|
273 |
+
name_buf.resize(namelen + 1, '\0');
|
274 |
+
file.read_raw(name_buf.data(), namelen);
|
275 |
+
file.seek((0-file.tell()) & 31, SEEK_CUR);
|
276 |
+
size_t offset = file.tell();
|
277 |
+
struct ggml_tensor * tensor = ggml_new_tensor(result->ctx, (enum ggml_type) type, n_dims, ne);
|
278 |
+
ggml_set_name(tensor, name_buf.data());
|
279 |
+
size_t nbytes = ggml_nbytes(tensor);
|
280 |
+
size_t nbytes_pad = ggml_nbytes_pad(tensor);
|
281 |
+
total_nbytes_pad += nbytes_pad;
|
282 |
+
tensors.push_back(tensor);
|
283 |
+
tensors_offset.push_back(offset);
|
284 |
+
file.seek(nbytes, SEEK_CUR);
|
285 |
+
}
|
286 |
+
// read tensor data
|
287 |
+
result->data.resize(total_nbytes_pad);
|
288 |
+
size_t data_offset = 0;
|
289 |
+
for (size_t i = 0; i < tensors.size(); ++i) {
|
290 |
+
struct ggml_tensor * tensor = tensors[i];
|
291 |
+
size_t offset = tensors_offset[i];
|
292 |
+
size_t nbytes = ggml_nbytes(tensor);
|
293 |
+
size_t nbytes_pad = ggml_nbytes_pad(tensor);
|
294 |
+
file.seek(offset, SEEK_SET);
|
295 |
+
tensor->data = result->data.data() + data_offset;
|
296 |
+
file.read_raw(tensor->data, nbytes);
|
297 |
+
data_offset += nbytes_pad;
|
298 |
+
}
|
299 |
+
return result;
|
300 |
+
}
|
301 |
+
|
302 |
+
|
303 |
+
static struct ggml_cgraph * build_graph_lora(
|
304 |
+
struct ggml_context * ctx,
|
305 |
+
struct ggml_tensor * tensor,
|
306 |
+
struct ggml_tensor * lora_a,
|
307 |
+
struct ggml_tensor * lora_b,
|
308 |
+
float scaling
|
309 |
+
) {
|
310 |
+
struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b);
|
311 |
+
if (scaling != 1.0f) {
|
312 |
+
ab = ggml_scale(ctx, ab, ggml_new_f32(ctx, scaling));
|
313 |
+
}
|
314 |
+
struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab);
|
315 |
+
|
316 |
+
struct ggml_cgraph * gf = ggml_new_graph(ctx);
|
317 |
+
ggml_build_forward_expand (gf, res);
|
318 |
+
return gf;
|
319 |
+
}
|
320 |
+
|
321 |
+
static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int n_threads) {
|
322 |
+
if (lora->ctx == NULL) {
|
323 |
+
return false;
|
324 |
+
}
|
325 |
+
std::string name = ggml_get_name(tensor);
|
326 |
+
std::string name_a = name + std::string(".loraA");
|
327 |
+
std::string name_b = name + std::string(".loraB");
|
328 |
+
struct ggml_tensor * lora_a = ggml_get_tensor(lora->ctx, name_a.c_str());
|
329 |
+
struct ggml_tensor * lora_b = ggml_get_tensor(lora->ctx, name_b.c_str());
|
330 |
+
if (lora_a == NULL || lora_b == NULL) {
|
331 |
+
return false;
|
332 |
+
}
|
333 |
+
|
334 |
+
float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r;
|
335 |
+
|
336 |
+
struct ggml_init_params params;
|
337 |
+
params.mem_size = GGML_OBJECT_SIZE + GGML_GRAPH_SIZE + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5;
|
338 |
+
params.mem_buffer = NULL;
|
339 |
+
params.no_alloc = true;
|
340 |
+
struct ggml_context * ctx = NULL;
|
341 |
+
struct ggml_allocr * alloc = NULL;
|
342 |
+
struct ggml_cgraph * gf = NULL;
|
343 |
+
|
344 |
+
ctx = ggml_init(params);
|
345 |
+
alloc = ggml_allocr_new_measure(tensor_alignment);
|
346 |
+
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
|
347 |
+
size_t alloc_size = ggml_allocr_alloc_graph(alloc, gf);
|
348 |
+
ggml_allocr_free(alloc);
|
349 |
+
ggml_free(ctx);
|
350 |
+
|
351 |
+
static std::vector<uint8_t> data_compute;
|
352 |
+
data_compute.resize(alloc_size + tensor_alignment);
|
353 |
+
|
354 |
+
ctx = ggml_init(params);
|
355 |
+
alloc = ggml_allocr_new(data_compute.data(), data_compute.size(), tensor_alignment);
|
356 |
+
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
|
357 |
+
ggml_allocr_alloc_graph(alloc, gf);
|
358 |
+
ggml_allocr_free(alloc);
|
359 |
+
|
360 |
+
struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads);
|
361 |
+
static std::vector<uint8_t> data_work;
|
362 |
+
data_work.resize(cplan.work_size);
|
363 |
+
cplan.work_data = data_work.data();
|
364 |
+
|
365 |
+
ggml_graph_compute(gf, &cplan);
|
366 |
+
|
367 |
+
ggml_free(ctx);
|
368 |
+
return true;
|
369 |
+
}
|
370 |
+
|
371 |
+
static void export_lora(struct export_lora_params * params) {
|
372 |
+
// load all loras
|
373 |
+
std::vector<struct lora_data *> loras;
|
374 |
+
for (size_t i = 0; i < params->lora.size(); ++i) {
|
375 |
+
struct lora_data * lora = load_lora(¶ms->lora[i]);
|
376 |
+
if (lora != NULL) {
|
377 |
+
loras.push_back(lora);
|
378 |
+
}
|
379 |
+
}
|
380 |
+
if (loras.size() == 0) {
|
381 |
+
fprintf(stderr, "warning: no lora adapters will be applied.\n");
|
382 |
+
}
|
383 |
+
|
384 |
+
// open input file
|
385 |
+
struct llama_file fin(params->fn_model_base.c_str(), "rb");
|
386 |
+
if (!fin.fp) {
|
387 |
+
die_fmt("Could not open file '%s'\n", params->fn_model_base.c_str());
|
388 |
+
}
|
389 |
+
|
390 |
+
// open base model gguf, read tensors without their data
|
391 |
+
struct ggml_context * ctx_in;
|
392 |
+
struct gguf_init_params params_gguf;
|
393 |
+
params_gguf.no_alloc = true;
|
394 |
+
params_gguf.ctx = &ctx_in;
|
395 |
+
struct gguf_context * gguf_in = gguf_init_from_file(params->fn_model_base.c_str(), params_gguf);
|
396 |
+
|
397 |
+
// create new gguf
|
398 |
+
struct gguf_context * gguf_out = gguf_init_empty();
|
399 |
+
|
400 |
+
// copy meta data from base model: kv and tensors
|
401 |
+
gguf_set_kv(gguf_out, gguf_in);
|
402 |
+
int n_tensors = gguf_get_n_tensors(gguf_in);
|
403 |
+
for (int i=0; i < n_tensors; ++i) {
|
404 |
+
const char * name = gguf_get_tensor_name(gguf_in, i);
|
405 |
+
struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
|
406 |
+
gguf_add_tensor(gguf_out, tensor);
|
407 |
+
}
|
408 |
+
|
409 |
+
// create output file
|
410 |
+
struct llama_file fout(params->fn_model_out.c_str(), "wb");
|
411 |
+
if (!fout.fp) {
|
412 |
+
die_fmt("Could not create file '%s'\n", params->fn_model_out.c_str());
|
413 |
+
}
|
414 |
+
|
415 |
+
// write gguf meta data
|
416 |
+
std::vector<uint8_t> meta;
|
417 |
+
meta.resize(gguf_get_meta_size(gguf_out));
|
418 |
+
gguf_get_meta_data(gguf_out, meta.data());
|
419 |
+
fout.write_raw(meta.data(), meta.size());
|
420 |
+
|
421 |
+
std::vector<uint8_t> data;
|
422 |
+
std::vector<uint8_t> padding;
|
423 |
+
for (int i=0; i < n_tensors; ++i) {
|
424 |
+
const char * name = gguf_get_tensor_name(gguf_in, i);
|
425 |
+
struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
|
426 |
+
|
427 |
+
// read tensor data
|
428 |
+
data.resize(ggml_nbytes(tensor));
|
429 |
+
tensor->data = data.data();
|
430 |
+
size_t offset = gguf_get_tensor_offset(gguf_in, i);
|
431 |
+
fin.seek(offset + meta.size(), SEEK_SET);
|
432 |
+
fin.read_raw(data.data(), data.size());
|
433 |
+
|
434 |
+
// apply all loras
|
435 |
+
for (size_t k = 0; k < loras.size(); ++k) {
|
436 |
+
apply_lora(tensor, loras[k], params->n_threads);
|
437 |
+
}
|
438 |
+
|
439 |
+
// write tensor data + padding
|
440 |
+
padding.clear();
|
441 |
+
padding.resize(GGML_PAD(data.size(), gguf_get_alignment(gguf_out)) - data.size(), 0);
|
442 |
+
|
443 |
+
GGML_ASSERT(fout.tell() == offset + meta.size());
|
444 |
+
// fout.seek(offset + meta.size(), SEEK_SET);
|
445 |
+
fout.write_raw(data.data(), data.size());
|
446 |
+
fout.write_raw(padding.data(), padding.size());
|
447 |
+
|
448 |
+
if (i % 2 == 0) {
|
449 |
+
printf(".");
|
450 |
+
}
|
451 |
+
}
|
452 |
+
printf("\n");
|
453 |
+
|
454 |
+
// close gguf
|
455 |
+
gguf_free(gguf_out);
|
456 |
+
gguf_free(gguf_in);
|
457 |
+
|
458 |
+
// free loras
|
459 |
+
for (size_t i = 0; i < loras.size(); ++i) {
|
460 |
+
free_lora(loras[i]);
|
461 |
+
}
|
462 |
+
}
|
463 |
+
|
464 |
+
int main(int argc, char ** argv) {
|
465 |
+
struct export_lora_params params = get_default_export_lora_params();
|
466 |
+
|
467 |
+
if (!export_lora_params_parse(argc, argv, ¶ms)) {
|
468 |
+
return 1;
|
469 |
+
}
|
470 |
+
|
471 |
+
export_lora(¶ms);
|
472 |
+
|
473 |
+
return 0;
|
474 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 100257,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 100257,
|
6 |
+
"transformers_version": "4.41.0"
|
7 |
+
}
|
ggml-model-f16.gguf
ADDED
File without changes
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e477bec9cd907609a3263adf9fcbe650487951ebc1b1655c50c51eca2adf5af2
|
3 |
+
size 4984037184
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95933d2775d1bbac72107fc0cf0bc3bf0db518522c0b8c57b7cd758b0c5ff48e
|
3 |
+
size 1594062688
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6578061312
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.12.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.13.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.14.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.14.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.15.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.15.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.16.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.16.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.17.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.17.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.18.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.18.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.19.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.19.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.2.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.2.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.20.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
191 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
193 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"model.layers.20.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
196 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.21.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
205 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
207 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
208 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
209 |
+
"model.layers.21.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
210 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
211 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
212 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
215 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
216 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
217 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
218 |
+
"model.layers.22.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
219 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
220 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
221 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
222 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
223 |
+
"model.layers.22.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
224 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
226 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
229 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
230 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
231 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
232 |
+
"model.layers.23.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
233 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
234 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
235 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"model.layers.23.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
238 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
240 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
241 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
243 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
244 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
245 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
246 |
+
"model.layers.3.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.3.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.4.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
261 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.4.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
273 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"model.layers.5.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
275 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
277 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
279 |
+
"model.layers.5.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
280 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
281 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
282 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.6.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.6.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
297 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
298 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
299 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
300 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
301 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
302 |
+
"model.layers.7.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
303 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
304 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
305 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
306 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
307 |
+
"model.layers.7.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
308 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
309 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
310 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
311 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
312 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
313 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
314 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
315 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
316 |
+
"model.layers.8.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
317 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
318 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
319 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
320 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
321 |
+
"model.layers.8.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
322 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
323 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
324 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
325 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
326 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
327 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
328 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
329 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
330 |
+
"model.layers.9.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
331 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
332 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
333 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
334 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
335 |
+
"model.layers.9.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
344 |
+
"model.norm.bias": "model-00002-of-00002.safetensors",
|
345 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
346 |
+
}
|
347 |
+
}
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e33000f86e77b6d015fc66f83393220237f21ef702a3ec03aeeef007c1b90015
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07515c2b046d99c3743a994e794dd47b173671b79b64b92ecc764813da2c450b
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|reg_extra|>",
|
4 |
+
"<|endoftext|>",
|
5 |
+
"<|fim_prefix|>",
|
6 |
+
"<|fim_middle|>",
|
7 |
+
"<|fim_suffix|>",
|
8 |
+
"<|fim_pad|>",
|
9 |
+
"<gh_stars>",
|
10 |
+
"<filename>",
|
11 |
+
"<issue_start>",
|
12 |
+
"<issue_comment>",
|
13 |
+
"<issue_closed>",
|
14 |
+
"<jupyter_start>",
|
15 |
+
"<jupyter_text>",
|
16 |
+
"<jupyter_code>",
|
17 |
+
"<jupyter_output>",
|
18 |
+
"<empty_output>",
|
19 |
+
"<commit_before>",
|
20 |
+
"<commit_msg>",
|
21 |
+
"<commit_after>",
|
22 |
+
"<reponame>",
|
23 |
+
"<|endofprompt|>",
|
24 |
+
"<|im_start|>",
|
25 |
+
"<|im_end|>",
|
26 |
+
"<|pause|>",
|
27 |
+
"<|reg0|>",
|
28 |
+
"<|reg1|>",
|
29 |
+
"<|reg2|>",
|
30 |
+
"<|reg3|>",
|
31 |
+
"<|reg4|>",
|
32 |
+
"<|reg5|>",
|
33 |
+
"<|reg6|>",
|
34 |
+
"<|reg7|>",
|
35 |
+
"<|extra0|>"
|
36 |
+
],
|
37 |
+
"bos_token": {
|
38 |
+
"content": "<|endoftext|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"eos_token": {
|
45 |
+
"content": "<|endoftext|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
},
|
51 |
+
"pad_token": "<|endoftext|>",
|
52 |
+
"unk_token": {
|
53 |
+
"content": "<|endoftext|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false
|
58 |
+
}
|
59 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"100256": {
|
5 |
+
"content": "<|reg_extra|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"100257": {
|
13 |
+
"content": "<|endoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"100258": {
|
21 |
+
"content": "<|fim_prefix|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"100259": {
|
29 |
+
"content": "<|fim_middle|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"100260": {
|
37 |
+
"content": "<|fim_suffix|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"100261": {
|
45 |
+
"content": "<|fim_pad|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"100262": {
|
53 |
+
"content": "<gh_stars>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"100263": {
|
61 |
+
"content": "<filename>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"100264": {
|
69 |
+
"content": "<issue_start>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"100265": {
|
77 |
+
"content": "<issue_comment>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"100266": {
|
85 |
+
"content": "<issue_closed>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"100267": {
|
93 |
+
"content": "<jupyter_start>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"100268": {
|
101 |
+
"content": "<jupyter_text>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"100269": {
|
109 |
+
"content": "<jupyter_code>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"100270": {
|
117 |
+
"content": "<jupyter_output>",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"100271": {
|
125 |
+
"content": "<empty_output>",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"100272": {
|
133 |
+
"content": "<commit_before>",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
},
|
140 |
+
"100273": {
|
141 |
+
"content": "<commit_msg>",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": true
|
147 |
+
},
|
148 |
+
"100274": {
|
149 |
+
"content": "<commit_after>",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": false,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": true
|
155 |
+
},
|
156 |
+
"100275": {
|
157 |
+
"content": "<reponame>",
|
158 |
+
"lstrip": false,
|
159 |
+
"normalized": false,
|
160 |
+
"rstrip": false,
|
161 |
+
"single_word": false,
|
162 |
+
"special": true
|
163 |
+
},
|
164 |
+
"100276": {
|
165 |
+
"content": "<|endofprompt|>",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false,
|
170 |
+
"special": true
|
171 |
+
},
|
172 |
+
"100277": {
|
173 |
+
"content": "<|im_start|>",
|
174 |
+
"lstrip": false,
|
175 |
+
"normalized": false,
|
176 |
+
"rstrip": false,
|
177 |
+
"single_word": false,
|
178 |
+
"special": true
|
179 |
+
},
|
180 |
+
"100278": {
|
181 |
+
"content": "<|im_end|>",
|
182 |
+
"lstrip": false,
|
183 |
+
"normalized": false,
|
184 |
+
"rstrip": false,
|
185 |
+
"single_word": false,
|
186 |
+
"special": true
|
187 |
+
},
|
188 |
+
"100279": {
|
189 |
+
"content": "<|pause|>",
|
190 |
+
"lstrip": false,
|
191 |
+
"normalized": false,
|
192 |
+
"rstrip": false,
|
193 |
+
"single_word": false,
|
194 |
+
"special": true
|
195 |
+
},
|
196 |
+
"100280": {
|
197 |
+
"content": "<|reg0|>",
|
198 |
+
"lstrip": false,
|
199 |
+
"normalized": false,
|
200 |
+
"rstrip": false,
|
201 |
+
"single_word": false,
|
202 |
+
"special": true
|
203 |
+
},
|
204 |
+
"100281": {
|
205 |
+
"content": "<|reg1|>",
|
206 |
+
"lstrip": false,
|
207 |
+
"normalized": false,
|
208 |
+
"rstrip": false,
|
209 |
+
"single_word": false,
|
210 |
+
"special": true
|
211 |
+
},
|
212 |
+
"100282": {
|
213 |
+
"content": "<|reg2|>",
|
214 |
+
"lstrip": false,
|
215 |
+
"normalized": false,
|
216 |
+
"rstrip": false,
|
217 |
+
"single_word": false,
|
218 |
+
"special": true
|
219 |
+
},
|
220 |
+
"100283": {
|
221 |
+
"content": "<|reg3|>",
|
222 |
+
"lstrip": false,
|
223 |
+
"normalized": false,
|
224 |
+
"rstrip": false,
|
225 |
+
"single_word": false,
|
226 |
+
"special": true
|
227 |
+
},
|
228 |
+
"100284": {
|
229 |
+
"content": "<|reg4|>",
|
230 |
+
"lstrip": false,
|
231 |
+
"normalized": false,
|
232 |
+
"rstrip": false,
|
233 |
+
"single_word": false,
|
234 |
+
"special": true
|
235 |
+
},
|
236 |
+
"100285": {
|
237 |
+
"content": "<|reg5|>",
|
238 |
+
"lstrip": false,
|
239 |
+
"normalized": false,
|
240 |
+
"rstrip": false,
|
241 |
+
"single_word": false,
|
242 |
+
"special": true
|
243 |
+
},
|
244 |
+
"100286": {
|
245 |
+
"content": "<|reg6|>",
|
246 |
+
"lstrip": false,
|
247 |
+
"normalized": false,
|
248 |
+
"rstrip": false,
|
249 |
+
"single_word": false,
|
250 |
+
"special": true
|
251 |
+
},
|
252 |
+
"100287": {
|
253 |
+
"content": "<|reg7|>",
|
254 |
+
"lstrip": false,
|
255 |
+
"normalized": false,
|
256 |
+
"rstrip": false,
|
257 |
+
"single_word": false,
|
258 |
+
"special": true
|
259 |
+
},
|
260 |
+
"100288": {
|
261 |
+
"content": "<|extra0|>",
|
262 |
+
"lstrip": false,
|
263 |
+
"normalized": false,
|
264 |
+
"rstrip": false,
|
265 |
+
"single_word": false,
|
266 |
+
"special": true
|
267 |
+
}
|
268 |
+
},
|
269 |
+
"additional_special_tokens": [
|
270 |
+
"<|reg_extra|>",
|
271 |
+
"<|endoftext|>",
|
272 |
+
"<|fim_prefix|>",
|
273 |
+
"<|fim_middle|>",
|
274 |
+
"<|fim_suffix|>",
|
275 |
+
"<|fim_pad|>",
|
276 |
+
"<gh_stars>",
|
277 |
+
"<filename>",
|
278 |
+
"<issue_start>",
|
279 |
+
"<issue_comment>",
|
280 |
+
"<issue_closed>",
|
281 |
+
"<jupyter_start>",
|
282 |
+
"<jupyter_text>",
|
283 |
+
"<jupyter_code>",
|
284 |
+
"<jupyter_output>",
|
285 |
+
"<empty_output>",
|
286 |
+
"<commit_before>",
|
287 |
+
"<commit_msg>",
|
288 |
+
"<commit_after>",
|
289 |
+
"<reponame>",
|
290 |
+
"<|endofprompt|>",
|
291 |
+
"<|im_start|>",
|
292 |
+
"<|im_end|>",
|
293 |
+
"<|pause|>",
|
294 |
+
"<|reg0|>",
|
295 |
+
"<|reg1|>",
|
296 |
+
"<|reg2|>",
|
297 |
+
"<|reg3|>",
|
298 |
+
"<|reg4|>",
|
299 |
+
"<|reg5|>",
|
300 |
+
"<|reg6|>",
|
301 |
+
"<|reg7|>",
|
302 |
+
"<|extra0|>"
|
303 |
+
],
|
304 |
+
"bos_token": "<|endoftext|>",
|
305 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = 'You are a helpful assistant.' %}{% endif %}{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in loop_messages %}{% if loop.index0 == 0 %}{{'<|im_start|>system\n' + system_message + '<|im_end|>\n'}}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
306 |
+
"clean_up_tokenization_spaces": true,
|
307 |
+
"eos_token": "<|endoftext|>",
|
308 |
+
"model_max_length": 2048,
|
309 |
+
"pad_token": "<|endoftext|>",
|
310 |
+
"tokenizer_class": "GPT2Tokenizer",
|
311 |
+
"unk_token": "<|endoftext|>"
|
312 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.9936,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 312,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.192,
|
13 |
+
"grad_norm": 0.3010159432888031,
|
14 |
+
"learning_rate": 3.191489361702128e-05,
|
15 |
+
"loss": 2.2514,
|
16 |
+
"step": 15
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.384,
|
20 |
+
"grad_norm": 0.2521279752254486,
|
21 |
+
"learning_rate": 6.382978723404256e-05,
|
22 |
+
"loss": 2.1582,
|
23 |
+
"step": 30
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.576,
|
27 |
+
"grad_norm": 0.2557184100151062,
|
28 |
+
"learning_rate": 9.574468085106384e-05,
|
29 |
+
"loss": 1.8683,
|
30 |
+
"step": 45
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.768,
|
34 |
+
"grad_norm": 0.22737619280815125,
|
35 |
+
"learning_rate": 0.00012765957446808513,
|
36 |
+
"loss": 1.6607,
|
37 |
+
"step": 60
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.96,
|
41 |
+
"grad_norm": 0.19700799882411957,
|
42 |
+
"learning_rate": 0.00015957446808510637,
|
43 |
+
"loss": 1.4682,
|
44 |
+
"step": 75
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 1.152,
|
48 |
+
"grad_norm": 0.2368774265050888,
|
49 |
+
"learning_rate": 0.00019148936170212768,
|
50 |
+
"loss": 1.3196,
|
51 |
+
"step": 90
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 1.3439999999999999,
|
55 |
+
"grad_norm": 0.3574005365371704,
|
56 |
+
"learning_rate": 0.00018990825688073394,
|
57 |
+
"loss": 1.1283,
|
58 |
+
"step": 105
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 1.536,
|
62 |
+
"grad_norm": 0.3291820287704468,
|
63 |
+
"learning_rate": 0.0001761467889908257,
|
64 |
+
"loss": 0.9629,
|
65 |
+
"step": 120
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 1.728,
|
69 |
+
"grad_norm": 0.4235256612300873,
|
70 |
+
"learning_rate": 0.00016238532110091745,
|
71 |
+
"loss": 0.8761,
|
72 |
+
"step": 135
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 1.92,
|
76 |
+
"grad_norm": 0.3522832691669464,
|
77 |
+
"learning_rate": 0.00014862385321100919,
|
78 |
+
"loss": 0.7764,
|
79 |
+
"step": 150
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 2.112,
|
83 |
+
"grad_norm": 0.3914245367050171,
|
84 |
+
"learning_rate": 0.00013486238532110092,
|
85 |
+
"loss": 0.6717,
|
86 |
+
"step": 165
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 2.304,
|
90 |
+
"grad_norm": 0.3502177894115448,
|
91 |
+
"learning_rate": 0.00012110091743119268,
|
92 |
+
"loss": 0.6329,
|
93 |
+
"step": 180
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 2.496,
|
97 |
+
"grad_norm": 0.5064918398857117,
|
98 |
+
"learning_rate": 0.0001073394495412844,
|
99 |
+
"loss": 0.5551,
|
100 |
+
"step": 195
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 2.6879999999999997,
|
104 |
+
"grad_norm": 0.4178985357284546,
|
105 |
+
"learning_rate": 9.357798165137616e-05,
|
106 |
+
"loss": 0.5132,
|
107 |
+
"step": 210
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 2.88,
|
111 |
+
"grad_norm": 0.3729366958141327,
|
112 |
+
"learning_rate": 7.98165137614679e-05,
|
113 |
+
"loss": 0.4831,
|
114 |
+
"step": 225
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 3.072,
|
118 |
+
"grad_norm": 0.30623266100883484,
|
119 |
+
"learning_rate": 6.605504587155963e-05,
|
120 |
+
"loss": 0.4484,
|
121 |
+
"step": 240
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 3.2640000000000002,
|
125 |
+
"grad_norm": 0.31436726450920105,
|
126 |
+
"learning_rate": 5.229357798165138e-05,
|
127 |
+
"loss": 0.4255,
|
128 |
+
"step": 255
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 3.456,
|
132 |
+
"grad_norm": 0.32084089517593384,
|
133 |
+
"learning_rate": 3.8532110091743125e-05,
|
134 |
+
"loss": 0.3731,
|
135 |
+
"step": 270
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 3.648,
|
139 |
+
"grad_norm": 0.3452220857143402,
|
140 |
+
"learning_rate": 2.4770642201834864e-05,
|
141 |
+
"loss": 0.3786,
|
142 |
+
"step": 285
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 3.84,
|
146 |
+
"grad_norm": 0.3483213782310486,
|
147 |
+
"learning_rate": 1.1009174311926607e-05,
|
148 |
+
"loss": 0.3988,
|
149 |
+
"step": 300
|
150 |
+
}
|
151 |
+
],
|
152 |
+
"logging_steps": 15,
|
153 |
+
"max_steps": 312,
|
154 |
+
"num_input_tokens_seen": 0,
|
155 |
+
"num_train_epochs": 4,
|
156 |
+
"save_steps": 1000,
|
157 |
+
"stateful_callbacks": {
|
158 |
+
"TrainerControl": {
|
159 |
+
"args": {
|
160 |
+
"should_epoch_stop": false,
|
161 |
+
"should_evaluate": false,
|
162 |
+
"should_log": false,
|
163 |
+
"should_save": true,
|
164 |
+
"should_training_stop": true
|
165 |
+
},
|
166 |
+
"attributes": {}
|
167 |
+
}
|
168 |
+
},
|
169 |
+
"total_flos": 4.447199037200794e+16,
|
170 |
+
"train_batch_size": 16,
|
171 |
+
"trial_name": null,
|
172 |
+
"trial_params": null
|
173 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2c89f66bc7dc95dfee8c0f78fbbe9a4b13a85b2831c23caaf58ebe5bdaf86f2
|
3 |
+
size 5048
|