--- license: gemma pipeline_tag: text-generation tags: - ONNX - DML - DirectML - ONNXRuntime - gemma - google - conversational - custom_code inference: false language: - en --- # Gemma-2B-Instruct-ONNX ## Model Summary This repository contains optimized versions of the [gemma-2b-it](https://huggingface.co/google/gemma-2b-it) model, designed to accelerate inference using ONNX Runtime. These optimizations are specifically tailored for CPU and DirectML. DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning, offering GPU acceleration across a wide range of supported hardware and drivers, including those from AMD, Intel, NVIDIA, and Qualcomm. ## ONNX Models Here are some of the optimized configurations we have added: - **ONNX model for int4 DirectML:** ONNX model for AMD, Intel, and NVIDIA GPUs on Windows, quantized to int4 using AWQ. - **ONNX model for int4 CPU and Mobile:** ONNX model for CPU and mobile using int4 quantization via RTN. There are two versions uploaded to balance latency vs. accuracy. Acc=1 is targeted at improved accuracy, while Acc=4 is for improved performance. For mobile devices, we recommend using the model with acc-level-4. ## Usage ### Installation and Setup To use the Gemma-2B-Instruct-ONNX model on Windows with DirectML, follow these steps: 1. **Create and activate a Conda environment:** ```sh conda create -n onnx python=3.10 conda activate onnx ``` 2. **Install Git LFS:** ```sh winget install -e --id GitHub.GitLFS ``` 3. **Install Hugging Face CLI:** ```sh pip install huggingface-hub[cli] ``` 4. **Download the model:** ```sh huggingface-cli download EmbeddedLLM/gemma-2b-it-onnx --include="onnx/directml/*" --local-dir .\gemma-2b-it-onnx ``` 5. **Install necessary Python packages:** ```sh pip install numpy==1.26.4 pip install onnxruntime-directml pip install --pre onnxruntime-genai-directml ``` 6. **Install Visual Studio 2015 runtime:** ```sh conda install conda-forge::vs2015_runtime ``` 7. **Download the example script:** ```sh Invoke-WebRequest -Uri "https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi3-qa.py" -OutFile "phi3-qa.py" ``` 8. **Run the example script:** ```sh python phi3-qa.py -m .\gemma-2b-it-onnx ``` ### Hardware Requirements **Minimum Configuration:** - **Windows:** DirectX 12-capable GPU (AMD/Nvidia) - **CPU:** x86_64 / ARM64 **Tested Configurations:** - **GPU:** AMD Ryzen 8000 Series iGPU (DirectML) - **CPU:** AMD Ryzen CPU ## Resources and Technical Documentation - [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) - [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma) - [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335?version=gemma-2b-it-gg-hf) ## Terms of Use - [Terms](https://www.kaggle.com/models/google/gemma/license/consent)