EmeraldMP commited on
Commit
8d59486
1 Parent(s): 17a862f

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: Artificial intelligence is changing the way we live and work.
12
+ - text: The university is offering scholarships for students in financial need.
13
+ - text: The new Marvel movie is breaking box office records.
14
+ - text: The annual Met Gala is a major event in the fashion world.
15
+ - text: Visiting the Grand Canyon is a breathtaking experience.
16
+ pipeline_tag: text-classification
17
+ inference: true
18
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
19
+ ---
20
+
21
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
22
+
23
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
24
+
25
+ The model has been trained using an efficient few-shot learning technique that involves:
26
+
27
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
28
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+ - **Model Type:** SetFit
34
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
35
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
36
+ - **Maximum Sequence Length:** 512 tokens
37
+ - **Number of Classes:** 12 classes
38
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
39
+ <!-- - **Language:** Unknown -->
40
+ <!-- - **License:** Unknown -->
41
+
42
+ ### Model Sources
43
+
44
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
45
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
46
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
47
+
48
+ ### Model Labels
49
+ | Label | Examples |
50
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
51
+ | 0 | <ul><li>'The mayor announced a new initiative to improve public transportation.'</li><li>'The senator is facing criticism for her stance on the recent bill.'</li><li>'The upcoming election has sparked intense debates among the candidates.'</li></ul> |
52
+ | 3 | <ul><li>'Regular exercise and a balanced diet are key to maintaining good health.'</li><li>'The World Health Organization has issued new guidelines on COVID-19.'</li><li>'A new study reveals the benefits of meditation for mental health.'</li></ul> |
53
+ | 6 | <ul><li>'The stock market saw a significant drop following the announcement.'</li><li>'Investing in real estate can be a profitable venture if done correctly.'</li><li>"The company's profits have doubled since the launch of their new product."</li></ul> |
54
+ | 9 | <ul><li>'Visiting the Grand Canyon is a breathtaking experience.'</li><li>'The tourism industry has been severely impacted by the pandemic.'</li><li>'Backpacking through Europe is a popular choice for young travelers.'</li></ul> |
55
+ | 12 | <ul><li>'The new restaurant in town offers a fusion of Italian and Japanese cuisine.'</li><li>'Drinking eight glasses of water a day is essential for staying hydrated.'</li><li>'Cooking classes are a fun way to learn new recipes and techniques.'</li></ul> |
56
+ | 15 | <ul><li>'The school district is implementing a new curriculum for the upcoming year.'</li><li>'Online learning has become increasingly popular during the pandemic.'</li><li>'The university is offering scholarships for students in financial need.'</li></ul> |
57
+ | 18 | <ul><li>'Climate change is causing a significant rise in sea levels.'</li><li>'Recycling and composting are effective ways to reduce waste.'</li><li>'The Amazon rainforest is home to millions of unique species.'</li></ul> |
58
+ | 21 | <ul><li>'The new fashion trend is all about sustainability and eco-friendly materials.'</li><li>'The annual Met Gala is a major event in the fashion world.'</li><li>'Vintage clothing has made a comeback in recent years.'</li></ul> |
59
+ | 24 | <ul><li>"NASA's Mars Rover has made significant discoveries about the red planet."</li><li>'The Nobel Prize in Physics was awarded for breakthroughs in black hole research.'</li><li>'Genetic engineering is opening up new possibilities in medical treatment.'</li></ul> |
60
+ | 27 | <ul><li>'The NBA Finals are set to begin next week with the top two teams in the league.'</li><li>'Serena Williams continues to dominate the tennis world with her powerful serve.'</li><li>'The World Cup is the most prestigious tournament in international soccer.'</li></ul> |
61
+ | 30 | <ul><li>'Artificial intelligence is changing the way we live and work.'</li><li>'The latest iPhone has a number of exciting new features.'</li><li>'Cybersecurity is becoming increasingly important as more and more data moves online.'</li></ul> |
62
+ | 33 | <ul><li>'The new Marvel movie is breaking box office records.'</li><li>'The Grammy Awards are a celebration of the best music of the year.'</li><li>'The latest season of Game of Thrones had fans on the edge of their seats.'</li></ul> |
63
+
64
+ ## Uses
65
+
66
+ ### Direct Use for Inference
67
+
68
+ First install the SetFit library:
69
+
70
+ ```bash
71
+ pip install setfit
72
+ ```
73
+
74
+ Then you can load this model and run inference.
75
+
76
+ ```python
77
+ from setfit import SetFitModel
78
+
79
+ # Download from the 🤗 Hub
80
+ model = SetFitModel.from_pretrained("EmeraldMP/ANLP_kaggle")
81
+ # Run inference
82
+ preds = model("The new Marvel movie is breaking box office records.")
83
+ ```
84
+
85
+ <!--
86
+ ### Downstream Use
87
+
88
+ *List how someone could finetune this model on their own dataset.*
89
+ -->
90
+
91
+ <!--
92
+ ### Out-of-Scope Use
93
+
94
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
95
+ -->
96
+
97
+ <!--
98
+ ## Bias, Risks and Limitations
99
+
100
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
101
+ -->
102
+
103
+ <!--
104
+ ### Recommendations
105
+
106
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
107
+ -->
108
+
109
+ ## Training Details
110
+
111
+ ### Training Set Metrics
112
+ | Training set | Min | Median | Max |
113
+ |:-------------|:----|:--------|:----|
114
+ | Word count | 8 | 11.0833 | 17 |
115
+
116
+ | Label | Training Sample Count |
117
+ |:------|:----------------------|
118
+ | 0 | 3 |
119
+ | 3 | 3 |
120
+ | 6 | 3 |
121
+ | 9 | 3 |
122
+ | 12 | 3 |
123
+ | 15 | 3 |
124
+ | 18 | 3 |
125
+ | 21 | 3 |
126
+ | 24 | 3 |
127
+ | 27 | 3 |
128
+ | 30 | 3 |
129
+ | 33 | 3 |
130
+
131
+ ### Training Hyperparameters
132
+ - batch_size: (16, 16)
133
+ - num_epochs: (1, 1)
134
+ - max_steps: -1
135
+ - sampling_strategy: oversampling
136
+ - num_iterations: 20
137
+ - body_learning_rate: (2e-05, 2e-05)
138
+ - head_learning_rate: 2e-05
139
+ - loss: CosineSimilarityLoss
140
+ - distance_metric: cosine_distance
141
+ - margin: 0.25
142
+ - end_to_end: False
143
+ - use_amp: False
144
+ - warmup_proportion: 0.1
145
+ - seed: 42
146
+ - eval_max_steps: -1
147
+ - load_best_model_at_end: False
148
+
149
+ ### Training Results
150
+ | Epoch | Step | Training Loss | Validation Loss |
151
+ |:------:|:----:|:-------------:|:---------------:|
152
+ | 0.0111 | 1 | 0.1765 | - |
153
+ | 0.5556 | 50 | 0.0137 | - |
154
+
155
+ ### Framework Versions
156
+ - Python: 3.10.12
157
+ - SetFit: 1.0.3
158
+ - Sentence Transformers: 2.7.0
159
+ - Transformers: 4.38.2
160
+ - PyTorch: 2.2.1+cu121
161
+ - Datasets: 2.18.0
162
+ - Tokenizers: 0.15.2
163
+
164
+ ## Citation
165
+
166
+ ### BibTeX
167
+ ```bibtex
168
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
169
+ doi = {10.48550/ARXIV.2209.11055},
170
+ url = {https://arxiv.org/abs/2209.11055},
171
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
172
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
173
+ title = {Efficient Few-Shot Learning Without Prompts},
174
+ publisher = {arXiv},
175
+ year = {2022},
176
+ copyright = {Creative Commons Attribution 4.0 International}
177
+ }
178
+ ```
179
+
180
+ <!--
181
+ ## Glossary
182
+
183
+ *Clearly define terms in order to be accessible across audiences.*
184
+ -->
185
+
186
+ <!--
187
+ ## Model Card Authors
188
+
189
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
190
+ -->
191
+
192
+ <!--
193
+ ## Model Card Contact
194
+
195
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
196
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.38.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ead0296fbdd6209f7b8b0298059ca8311d854fab898a50c077becf041ad68f8
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c65d1adcc78e31307abd94037aff6120b3ff37a01986a225c05cee127e7b980b
3
+ size 74759
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff