Epiculous commited on
Commit
ea1a024
1 Parent(s): 5b86b3e

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,3 +1,202 @@
1
  ---
2
- license: agpl-3.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
  ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.0
adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "up_proj",
23
+ "q_proj",
24
+ "down_proj",
25
+ "v_proj",
26
+ "gate_proj",
27
+ "k_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:039c142cf6e3b99c5fae32d94b723e5b2f07103bf86a3454b0dfb314cbd82e02
3
+ size 335706186
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fd883ab30b832cadd4bdb4b0b9718653ee966b38e1a8234b4f8ecf99cba4b12
3
+ size 335604696
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-v0.1",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 8,
18
+ "quantization_config": {
19
+ "_load_in_4bit": false,
20
+ "_load_in_8bit": true,
21
+ "bnb_4bit_compute_dtype": "float32",
22
+ "bnb_4bit_quant_type": "fp4",
23
+ "bnb_4bit_use_double_quant": false,
24
+ "llm_int8_enable_fp32_cpu_offload": false,
25
+ "llm_int8_has_fp16_weight": false,
26
+ "llm_int8_skip_modules": null,
27
+ "llm_int8_threshold": 6.0,
28
+ "load_in_4bit": false,
29
+ "load_in_8bit": true,
30
+ "quant_method": "bitsandbytes"
31
+ },
32
+ "rms_norm_eps": 1e-05,
33
+ "rope_theta": 10000.0,
34
+ "sliding_window": 4096,
35
+ "tie_word_embeddings": false,
36
+ "torch_dtype": "bfloat16",
37
+ "transformers_version": "4.38.2",
38
+ "use_cache": false,
39
+ "vocab_size": 32000
40
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "transformers_version": "4.38.2"
7
+ }
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3ffda315b1effef96453f6a9beddc7037100247c0e0dc826476dad59791e77d
3
+ size 671466706
pytorch_model-00001-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0247a6d1fb840e5a9c1a7eb40deccc0f321e60ce36a482fc0527fe395d230ed2
3
+ size 4970611856
pytorch_model-00002-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dab9dea0ea6f569a3b4368c936390cfba89db484fe85be273be332f3834b3f8e
3
+ size 4916120394
pytorch_model-00003-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad22827937117f72db658e6330dd6a7aa0dc7e7d5682539f4cd64df107546beb
3
+ size 4597367860
pytorch_model-00004-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2106fbf783ace6ca83c4c3f839697a1b0515224d73619aefe5d940dbc2157579
3
+ size 524289413
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15008284672
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00004-of-00004.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
16
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
17
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
18
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
19
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
20
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
21
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
22
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
23
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
24
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
25
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
26
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
27
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
28
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
29
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
30
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
31
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
32
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
33
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
34
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
35
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
36
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
37
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
38
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
39
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
40
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
41
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
42
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
43
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
45
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
46
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
47
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
49
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
50
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
51
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
52
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
53
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
54
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
55
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
56
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
57
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
58
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
59
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
60
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
61
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
62
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
63
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
64
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
65
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
66
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
67
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
68
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
69
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
70
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
71
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
72
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
73
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
74
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
75
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
76
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
77
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
78
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
79
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
80
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
81
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
82
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
83
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
84
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
85
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
86
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
87
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
88
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
89
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
90
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
91
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
92
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
93
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
94
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
95
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
96
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
97
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
98
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
99
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
100
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
101
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
102
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
103
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
104
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
105
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
106
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
107
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
108
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
109
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
110
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
111
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
112
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
113
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
114
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
115
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
116
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
117
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
118
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
119
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
120
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
121
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
122
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
123
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
124
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
125
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
126
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
127
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
128
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
129
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
130
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
131
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
132
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
133
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
134
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
135
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
136
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
137
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
138
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
139
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
140
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
141
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
142
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
143
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
144
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
145
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
146
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
147
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
148
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
149
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
150
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
151
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
152
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
153
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
154
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
155
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
156
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
157
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
158
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
159
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
160
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
161
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
162
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
163
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
164
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
165
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
166
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
167
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
168
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
169
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
170
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
171
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
172
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
173
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
174
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
175
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
176
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
177
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
178
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
179
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
180
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
181
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
182
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
183
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
184
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
185
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
186
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
187
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
188
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
189
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
190
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
191
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
192
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
193
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
194
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
195
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
196
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
197
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
198
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
199
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
200
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
201
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
202
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
203
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
204
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
205
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
206
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
207
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
208
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
209
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
210
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
211
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
212
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
213
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
214
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
215
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
216
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
217
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
218
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
219
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
220
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
221
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
222
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
223
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
224
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
225
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
226
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
227
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
228
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
229
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
230
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
231
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
232
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
233
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
234
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
235
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
236
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
237
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
238
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
239
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
240
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
241
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
242
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
243
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
244
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
245
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
246
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
247
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
248
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
249
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
250
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
251
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
252
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
253
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
254
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
255
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
256
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
257
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
258
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
259
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
260
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
261
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
262
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
263
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
264
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
265
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
266
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
267
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
268
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
269
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
270
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
271
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
272
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
273
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
274
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
275
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
276
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
277
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
278
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
279
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
280
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
281
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
282
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
283
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
284
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
285
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
286
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
287
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
288
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
289
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
290
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
291
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
292
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
293
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
294
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
295
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
296
+ "model.norm.weight": "pytorch_model-00003-of-00004.bin"
297
+ }
298
+ }
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80fc5f2a7050058d70b5789810aff6b89b9df19bd1aa2a28ca6a3e07a67e329c
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24c9bc4582d98238bc4f1ac82c9148c4483a8b7f0843e9ae46e42941ae4ef9e5
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "additional_special_tokens": [],
32
+ "bos_token": "<s>",
33
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
34
+ "clean_up_tokenization_spaces": false,
35
+ "eos_token": "</s>",
36
+ "legacy": true,
37
+ "model_max_length": 1000000000000000019884624838656,
38
+ "pad_token": "</s>",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false,
44
+ "use_fast": true
45
+ }
trainer_state.json ADDED
@@ -0,0 +1,967 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9683794466403162,
5
+ "eval_steps": 16,
6
+ "global_step": 126,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "grad_norm": 0.17573034763336182,
14
+ "learning_rate": 2e-05,
15
+ "loss": 2.0307,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.02,
20
+ "eval_loss": 2.0314464569091797,
21
+ "eval_runtime": 589.9959,
22
+ "eval_samples_per_second": 0.351,
23
+ "eval_steps_per_second": 0.351,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.03,
28
+ "grad_norm": 0.1727771908044815,
29
+ "learning_rate": 4e-05,
30
+ "loss": 2.1265,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.05,
35
+ "grad_norm": 0.2174711972475052,
36
+ "learning_rate": 6e-05,
37
+ "loss": 2.0362,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.06,
42
+ "grad_norm": 0.15978679060935974,
43
+ "learning_rate": 8e-05,
44
+ "loss": 2.1557,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.08,
49
+ "grad_norm": 0.1518234759569168,
50
+ "learning_rate": 0.0001,
51
+ "loss": 1.9664,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.09,
56
+ "grad_norm": 0.1279090940952301,
57
+ "learning_rate": 0.00012,
58
+ "loss": 1.9584,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.11,
63
+ "grad_norm": 0.14364583790302277,
64
+ "learning_rate": 0.00014,
65
+ "loss": 2.0269,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.13,
70
+ "grad_norm": 0.18047624826431274,
71
+ "learning_rate": 0.00016,
72
+ "loss": 1.9699,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.14,
77
+ "grad_norm": 0.1313191056251526,
78
+ "learning_rate": 0.00018,
79
+ "loss": 1.93,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.16,
84
+ "grad_norm": 0.14072288572788239,
85
+ "learning_rate": 0.0002,
86
+ "loss": 1.9375,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.17,
91
+ "grad_norm": 0.13216689229011536,
92
+ "learning_rate": 0.00019999871623526481,
93
+ "loss": 2.0861,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.19,
98
+ "grad_norm": 0.12376871705055237,
99
+ "learning_rate": 0.00019999486497402038,
100
+ "loss": 2.0024,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.21,
105
+ "grad_norm": 0.11119924485683441,
106
+ "learning_rate": 0.00019998844631514886,
107
+ "loss": 2.0243,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.22,
112
+ "grad_norm": 0.11198648810386658,
113
+ "learning_rate": 0.00019997946042345127,
114
+ "loss": 1.9499,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.24,
119
+ "grad_norm": 0.11798805743455887,
120
+ "learning_rate": 0.00019996790752964305,
121
+ "loss": 2.0469,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.25,
126
+ "grad_norm": 0.12525062263011932,
127
+ "learning_rate": 0.00019995378793034814,
128
+ "loss": 2.0982,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.25,
133
+ "eval_loss": 1.9930143356323242,
134
+ "eval_runtime": 587.3154,
135
+ "eval_samples_per_second": 0.352,
136
+ "eval_steps_per_second": 0.352,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.27,
141
+ "grad_norm": 0.1235467791557312,
142
+ "learning_rate": 0.00019993710198809136,
143
+ "loss": 2.0232,
144
+ "step": 17
145
+ },
146
+ {
147
+ "epoch": 0.28,
148
+ "grad_norm": 0.10296319425106049,
149
+ "learning_rate": 0.00019991785013128923,
150
+ "loss": 1.996,
151
+ "step": 18
152
+ },
153
+ {
154
+ "epoch": 0.3,
155
+ "grad_norm": 0.10613357275724411,
156
+ "learning_rate": 0.00019989603285423889,
157
+ "loss": 2.0909,
158
+ "step": 19
159
+ },
160
+ {
161
+ "epoch": 0.32,
162
+ "grad_norm": 0.1147119328379631,
163
+ "learning_rate": 0.00019987165071710527,
164
+ "loss": 1.9893,
165
+ "step": 20
166
+ },
167
+ {
168
+ "epoch": 0.33,
169
+ "grad_norm": 0.1092303916811943,
170
+ "learning_rate": 0.00019984470434590703,
171
+ "loss": 1.9745,
172
+ "step": 21
173
+ },
174
+ {
175
+ "epoch": 0.35,
176
+ "grad_norm": 0.13837751746177673,
177
+ "learning_rate": 0.0001998151944325001,
178
+ "loss": 2.0544,
179
+ "step": 22
180
+ },
181
+ {
182
+ "epoch": 0.36,
183
+ "grad_norm": 0.12572677433490753,
184
+ "learning_rate": 0.00019978312173456027,
185
+ "loss": 1.9235,
186
+ "step": 23
187
+ },
188
+ {
189
+ "epoch": 0.38,
190
+ "grad_norm": 0.11084165424108505,
191
+ "learning_rate": 0.00019974848707556345,
192
+ "loss": 2.0651,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.4,
197
+ "grad_norm": 0.10701000690460205,
198
+ "learning_rate": 0.00019971129134476473,
199
+ "loss": 1.9667,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 0.41,
204
+ "grad_norm": 0.1185716763138771,
205
+ "learning_rate": 0.00019967153549717553,
206
+ "loss": 1.9993,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 0.43,
211
+ "grad_norm": 0.14391109347343445,
212
+ "learning_rate": 0.0001996292205535389,
213
+ "loss": 2.0942,
214
+ "step": 27
215
+ },
216
+ {
217
+ "epoch": 0.44,
218
+ "grad_norm": 0.11472482979297638,
219
+ "learning_rate": 0.00019958434760030346,
220
+ "loss": 2.0754,
221
+ "step": 28
222
+ },
223
+ {
224
+ "epoch": 0.46,
225
+ "grad_norm": 0.09692487865686417,
226
+ "learning_rate": 0.00019953691778959557,
227
+ "loss": 2.0101,
228
+ "step": 29
229
+ },
230
+ {
231
+ "epoch": 0.47,
232
+ "grad_norm": 0.10973215848207474,
233
+ "learning_rate": 0.00019948693233918952,
234
+ "loss": 2.0088,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 0.49,
239
+ "grad_norm": 0.10801681876182556,
240
+ "learning_rate": 0.00019943439253247656,
241
+ "loss": 2.0177,
242
+ "step": 31
243
+ },
244
+ {
245
+ "epoch": 0.51,
246
+ "grad_norm": 0.11581862717866898,
247
+ "learning_rate": 0.00019937929971843165,
248
+ "loss": 1.8967,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.51,
253
+ "eval_loss": 1.9818447828292847,
254
+ "eval_runtime": 587.0079,
255
+ "eval_samples_per_second": 0.353,
256
+ "eval_steps_per_second": 0.353,
257
+ "step": 32
258
+ },
259
+ {
260
+ "epoch": 0.52,
261
+ "grad_norm": 0.11895039677619934,
262
+ "learning_rate": 0.0001993216553115791,
263
+ "loss": 1.9273,
264
+ "step": 33
265
+ },
266
+ {
267
+ "epoch": 0.54,
268
+ "grad_norm": 0.12135493755340576,
269
+ "learning_rate": 0.00019926146079195594,
270
+ "loss": 2.0167,
271
+ "step": 34
272
+ },
273
+ {
274
+ "epoch": 0.55,
275
+ "grad_norm": 0.1046937108039856,
276
+ "learning_rate": 0.0001991987177050743,
277
+ "loss": 2.0068,
278
+ "step": 35
279
+ },
280
+ {
281
+ "epoch": 0.57,
282
+ "grad_norm": 0.11556221544742584,
283
+ "learning_rate": 0.00019913342766188138,
284
+ "loss": 2.157,
285
+ "step": 36
286
+ },
287
+ {
288
+ "epoch": 0.58,
289
+ "grad_norm": 0.10031617432832718,
290
+ "learning_rate": 0.00019906559233871828,
291
+ "loss": 2.0234,
292
+ "step": 37
293
+ },
294
+ {
295
+ "epoch": 0.6,
296
+ "grad_norm": 0.11878479272127151,
297
+ "learning_rate": 0.0001989952134772769,
298
+ "loss": 1.9956,
299
+ "step": 38
300
+ },
301
+ {
302
+ "epoch": 0.62,
303
+ "grad_norm": 0.10510522127151489,
304
+ "learning_rate": 0.00019892229288455532,
305
+ "loss": 2.1002,
306
+ "step": 39
307
+ },
308
+ {
309
+ "epoch": 0.63,
310
+ "grad_norm": 0.09501214325428009,
311
+ "learning_rate": 0.00019884683243281116,
312
+ "loss": 1.8809,
313
+ "step": 40
314
+ },
315
+ {
316
+ "epoch": 0.65,
317
+ "grad_norm": 0.09750509262084961,
318
+ "learning_rate": 0.00019876883405951377,
319
+ "loss": 2.1677,
320
+ "step": 41
321
+ },
322
+ {
323
+ "epoch": 0.66,
324
+ "grad_norm": 0.10707078874111176,
325
+ "learning_rate": 0.00019868829976729443,
326
+ "loss": 1.9349,
327
+ "step": 42
328
+ },
329
+ {
330
+ "epoch": 0.68,
331
+ "grad_norm": 0.11763511598110199,
332
+ "learning_rate": 0.00019860523162389476,
333
+ "loss": 2.0093,
334
+ "step": 43
335
+ },
336
+ {
337
+ "epoch": 0.7,
338
+ "grad_norm": 0.09981624782085419,
339
+ "learning_rate": 0.00019851963176211387,
340
+ "loss": 2.003,
341
+ "step": 44
342
+ },
343
+ {
344
+ "epoch": 0.71,
345
+ "grad_norm": 0.10791173577308655,
346
+ "learning_rate": 0.00019843150237975344,
347
+ "loss": 2.0147,
348
+ "step": 45
349
+ },
350
+ {
351
+ "epoch": 0.73,
352
+ "grad_norm": 0.10654355585575104,
353
+ "learning_rate": 0.00019834084573956128,
354
+ "loss": 2.0423,
355
+ "step": 46
356
+ },
357
+ {
358
+ "epoch": 0.74,
359
+ "grad_norm": 0.11113700270652771,
360
+ "learning_rate": 0.00019824766416917338,
361
+ "loss": 1.9396,
362
+ "step": 47
363
+ },
364
+ {
365
+ "epoch": 0.76,
366
+ "grad_norm": 0.11194361746311188,
367
+ "learning_rate": 0.00019815196006105402,
368
+ "loss": 1.9726,
369
+ "step": 48
370
+ },
371
+ {
372
+ "epoch": 0.76,
373
+ "eval_loss": 1.9757568836212158,
374
+ "eval_runtime": 586.7896,
375
+ "eval_samples_per_second": 0.353,
376
+ "eval_steps_per_second": 0.353,
377
+ "step": 48
378
+ },
379
+ {
380
+ "epoch": 0.77,
381
+ "grad_norm": 0.10718481242656708,
382
+ "learning_rate": 0.0001980537358724344,
383
+ "loss": 1.974,
384
+ "step": 49
385
+ },
386
+ {
387
+ "epoch": 0.79,
388
+ "grad_norm": 0.1139945313334465,
389
+ "learning_rate": 0.00019795299412524945,
390
+ "loss": 2.0978,
391
+ "step": 50
392
+ },
393
+ {
394
+ "epoch": 0.81,
395
+ "grad_norm": 0.11229316890239716,
396
+ "learning_rate": 0.0001978497374060733,
397
+ "loss": 2.0419,
398
+ "step": 51
399
+ },
400
+ {
401
+ "epoch": 0.82,
402
+ "grad_norm": 0.10654540359973907,
403
+ "learning_rate": 0.00019774396836605255,
404
+ "loss": 1.9337,
405
+ "step": 52
406
+ },
407
+ {
408
+ "epoch": 0.84,
409
+ "grad_norm": 0.09649579972028732,
410
+ "learning_rate": 0.00019763568972083856,
411
+ "loss": 2.0043,
412
+ "step": 53
413
+ },
414
+ {
415
+ "epoch": 0.85,
416
+ "grad_norm": 0.10226842761039734,
417
+ "learning_rate": 0.00019752490425051743,
418
+ "loss": 1.9678,
419
+ "step": 54
420
+ },
421
+ {
422
+ "epoch": 0.87,
423
+ "grad_norm": 0.10110396891832352,
424
+ "learning_rate": 0.0001974116147995387,
425
+ "loss": 2.0006,
426
+ "step": 55
427
+ },
428
+ {
429
+ "epoch": 0.89,
430
+ "grad_norm": 0.10171829164028168,
431
+ "learning_rate": 0.0001972958242766425,
432
+ "loss": 1.9753,
433
+ "step": 56
434
+ },
435
+ {
436
+ "epoch": 0.9,
437
+ "grad_norm": 0.1117730587720871,
438
+ "learning_rate": 0.0001971775356547846,
439
+ "loss": 1.9982,
440
+ "step": 57
441
+ },
442
+ {
443
+ "epoch": 0.92,
444
+ "grad_norm": 0.15865837037563324,
445
+ "learning_rate": 0.00019705675197106016,
446
+ "loss": 2.0222,
447
+ "step": 58
448
+ },
449
+ {
450
+ "epoch": 0.93,
451
+ "grad_norm": 0.10181812196969986,
452
+ "learning_rate": 0.00019693347632662595,
453
+ "loss": 2.0899,
454
+ "step": 59
455
+ },
456
+ {
457
+ "epoch": 0.95,
458
+ "grad_norm": 0.13255544006824493,
459
+ "learning_rate": 0.00019680771188662044,
460
+ "loss": 2.0191,
461
+ "step": 60
462
+ },
463
+ {
464
+ "epoch": 0.96,
465
+ "grad_norm": 0.8338626623153687,
466
+ "learning_rate": 0.0001966794618800827,
467
+ "loss": 2.0432,
468
+ "step": 61
469
+ },
470
+ {
471
+ "epoch": 0.98,
472
+ "grad_norm": 0.11790451407432556,
473
+ "learning_rate": 0.00019654872959986937,
474
+ "loss": 2.0005,
475
+ "step": 62
476
+ },
477
+ {
478
+ "epoch": 1.0,
479
+ "grad_norm": 0.12201216071844101,
480
+ "learning_rate": 0.00019641551840257035,
481
+ "loss": 1.9949,
482
+ "step": 63
483
+ },
484
+ {
485
+ "epoch": 1.01,
486
+ "grad_norm": 0.10102586448192596,
487
+ "learning_rate": 0.00019627983170842234,
488
+ "loss": 2.0108,
489
+ "step": 64
490
+ },
491
+ {
492
+ "epoch": 1.01,
493
+ "eval_loss": 1.9710921049118042,
494
+ "eval_runtime": 588.7491,
495
+ "eval_samples_per_second": 0.352,
496
+ "eval_steps_per_second": 0.352,
497
+ "step": 64
498
+ },
499
+ {
500
+ "epoch": 1.0,
501
+ "grad_norm": 0.14357174932956696,
502
+ "learning_rate": 0.00019614167300122126,
503
+ "loss": 1.7736,
504
+ "step": 65
505
+ },
506
+ {
507
+ "epoch": 1.02,
508
+ "grad_norm": 0.0991039052605629,
509
+ "learning_rate": 0.0001960010458282326,
510
+ "loss": 1.9889,
511
+ "step": 66
512
+ },
513
+ {
514
+ "epoch": 1.04,
515
+ "grad_norm": 0.10566934943199158,
516
+ "learning_rate": 0.00019585795380010044,
517
+ "loss": 1.8411,
518
+ "step": 67
519
+ },
520
+ {
521
+ "epoch": 1.05,
522
+ "grad_norm": 0.12068266421556473,
523
+ "learning_rate": 0.0001957124005907548,
524
+ "loss": 1.9175,
525
+ "step": 68
526
+ },
527
+ {
528
+ "epoch": 1.07,
529
+ "grad_norm": 0.10454852879047394,
530
+ "learning_rate": 0.00019556438993731726,
531
+ "loss": 1.9158,
532
+ "step": 69
533
+ },
534
+ {
535
+ "epoch": 1.08,
536
+ "grad_norm": 0.11026794463396072,
537
+ "learning_rate": 0.00019541392564000488,
538
+ "loss": 1.9053,
539
+ "step": 70
540
+ },
541
+ {
542
+ "epoch": 1.1,
543
+ "grad_norm": 0.11682567000389099,
544
+ "learning_rate": 0.00019526101156203295,
545
+ "loss": 1.9778,
546
+ "step": 71
547
+ },
548
+ {
549
+ "epoch": 1.11,
550
+ "grad_norm": 0.11718857288360596,
551
+ "learning_rate": 0.00019510565162951537,
552
+ "loss": 1.9957,
553
+ "step": 72
554
+ },
555
+ {
556
+ "epoch": 1.13,
557
+ "grad_norm": 0.11099609732627869,
558
+ "learning_rate": 0.00019494784983136425,
559
+ "loss": 1.8909,
560
+ "step": 73
561
+ },
562
+ {
563
+ "epoch": 1.15,
564
+ "grad_norm": 0.11991846561431885,
565
+ "learning_rate": 0.00019478761021918728,
566
+ "loss": 1.9644,
567
+ "step": 74
568
+ },
569
+ {
570
+ "epoch": 1.16,
571
+ "grad_norm": 0.12009608745574951,
572
+ "learning_rate": 0.0001946249369071837,
573
+ "loss": 2.0168,
574
+ "step": 75
575
+ },
576
+ {
577
+ "epoch": 1.18,
578
+ "grad_norm": 0.1274980902671814,
579
+ "learning_rate": 0.00019445983407203872,
580
+ "loss": 1.7852,
581
+ "step": 76
582
+ },
583
+ {
584
+ "epoch": 1.19,
585
+ "grad_norm": 0.12307930737733841,
586
+ "learning_rate": 0.00019429230595281632,
587
+ "loss": 1.9185,
588
+ "step": 77
589
+ },
590
+ {
591
+ "epoch": 1.21,
592
+ "grad_norm": 0.1239650622010231,
593
+ "learning_rate": 0.00019412235685085035,
594
+ "loss": 1.9912,
595
+ "step": 78
596
+ },
597
+ {
598
+ "epoch": 1.23,
599
+ "grad_norm": 0.12378279119729996,
600
+ "learning_rate": 0.00019394999112963402,
601
+ "loss": 1.8249,
602
+ "step": 79
603
+ },
604
+ {
605
+ "epoch": 1.24,
606
+ "grad_norm": 0.1403149962425232,
607
+ "learning_rate": 0.00019377521321470805,
608
+ "loss": 2.01,
609
+ "step": 80
610
+ },
611
+ {
612
+ "epoch": 1.24,
613
+ "eval_loss": 1.9759098291397095,
614
+ "eval_runtime": 587.469,
615
+ "eval_samples_per_second": 0.352,
616
+ "eval_steps_per_second": 0.352,
617
+ "step": 80
618
+ },
619
+ {
620
+ "epoch": 1.26,
621
+ "grad_norm": 0.12876343727111816,
622
+ "learning_rate": 0.00019359802759354695,
623
+ "loss": 1.9961,
624
+ "step": 81
625
+ },
626
+ {
627
+ "epoch": 1.27,
628
+ "grad_norm": 0.1330948770046234,
629
+ "learning_rate": 0.00019341843881544372,
630
+ "loss": 1.9642,
631
+ "step": 82
632
+ },
633
+ {
634
+ "epoch": 1.29,
635
+ "grad_norm": 0.13431289792060852,
636
+ "learning_rate": 0.00019323645149139319,
637
+ "loss": 1.9867,
638
+ "step": 83
639
+ },
640
+ {
641
+ "epoch": 1.3,
642
+ "grad_norm": 0.13692668080329895,
643
+ "learning_rate": 0.00019305207029397348,
644
+ "loss": 1.9685,
645
+ "step": 84
646
+ },
647
+ {
648
+ "epoch": 1.32,
649
+ "grad_norm": 0.13141922652721405,
650
+ "learning_rate": 0.00019286529995722623,
651
+ "loss": 1.9022,
652
+ "step": 85
653
+ },
654
+ {
655
+ "epoch": 1.34,
656
+ "grad_norm": 0.13360707461833954,
657
+ "learning_rate": 0.00019267614527653488,
658
+ "loss": 1.9811,
659
+ "step": 86
660
+ },
661
+ {
662
+ "epoch": 1.35,
663
+ "grad_norm": 0.1410575956106186,
664
+ "learning_rate": 0.00019248461110850157,
665
+ "loss": 2.0276,
666
+ "step": 87
667
+ },
668
+ {
669
+ "epoch": 1.37,
670
+ "grad_norm": 0.1281205415725708,
671
+ "learning_rate": 0.00019229070237082252,
672
+ "loss": 1.8166,
673
+ "step": 88
674
+ },
675
+ {
676
+ "epoch": 1.38,
677
+ "grad_norm": 0.31853872537612915,
678
+ "learning_rate": 0.0001920944240421617,
679
+ "loss": 1.9699,
680
+ "step": 89
681
+ },
682
+ {
683
+ "epoch": 1.4,
684
+ "grad_norm": 0.1361798644065857,
685
+ "learning_rate": 0.00019189578116202307,
686
+ "loss": 1.9419,
687
+ "step": 90
688
+ },
689
+ {
690
+ "epoch": 1.42,
691
+ "grad_norm": 0.1369122415781021,
692
+ "learning_rate": 0.0001916947788306211,
693
+ "loss": 2.0005,
694
+ "step": 91
695
+ },
696
+ {
697
+ "epoch": 1.43,
698
+ "grad_norm": 0.14621175825595856,
699
+ "learning_rate": 0.0001914914222087499,
700
+ "loss": 1.904,
701
+ "step": 92
702
+ },
703
+ {
704
+ "epoch": 1.45,
705
+ "grad_norm": 0.1483631581068039,
706
+ "learning_rate": 0.0001912857165176507,
707
+ "loss": 1.9783,
708
+ "step": 93
709
+ },
710
+ {
711
+ "epoch": 1.46,
712
+ "grad_norm": 0.15535128116607666,
713
+ "learning_rate": 0.00019107766703887764,
714
+ "loss": 1.9242,
715
+ "step": 94
716
+ },
717
+ {
718
+ "epoch": 1.48,
719
+ "grad_norm": 0.1497003585100174,
720
+ "learning_rate": 0.0001908672791141625,
721
+ "loss": 1.9094,
722
+ "step": 95
723
+ },
724
+ {
725
+ "epoch": 1.49,
726
+ "grad_norm": 0.14517174661159515,
727
+ "learning_rate": 0.00019065455814527718,
728
+ "loss": 2.0594,
729
+ "step": 96
730
+ },
731
+ {
732
+ "epoch": 1.49,
733
+ "eval_loss": 1.977068305015564,
734
+ "eval_runtime": 587.2535,
735
+ "eval_samples_per_second": 0.352,
736
+ "eval_steps_per_second": 0.352,
737
+ "step": 96
738
+ },
739
+ {
740
+ "epoch": 1.51,
741
+ "grad_norm": 0.149668887257576,
742
+ "learning_rate": 0.0001904395095938953,
743
+ "loss": 1.8582,
744
+ "step": 97
745
+ },
746
+ {
747
+ "epoch": 1.53,
748
+ "grad_norm": 0.14095304906368256,
749
+ "learning_rate": 0.00019022213898145176,
750
+ "loss": 1.8937,
751
+ "step": 98
752
+ },
753
+ {
754
+ "epoch": 1.54,
755
+ "grad_norm": 0.14488399028778076,
756
+ "learning_rate": 0.00019000245188900111,
757
+ "loss": 1.8799,
758
+ "step": 99
759
+ },
760
+ {
761
+ "epoch": 1.56,
762
+ "grad_norm": 0.1409035623073578,
763
+ "learning_rate": 0.00018978045395707418,
764
+ "loss": 1.9641,
765
+ "step": 100
766
+ },
767
+ {
768
+ "epoch": 1.57,
769
+ "grad_norm": 0.15016290545463562,
770
+ "learning_rate": 0.0001895561508855333,
771
+ "loss": 1.9878,
772
+ "step": 101
773
+ },
774
+ {
775
+ "epoch": 1.59,
776
+ "grad_norm": 0.14171820878982544,
777
+ "learning_rate": 0.00018932954843342591,
778
+ "loss": 1.9328,
779
+ "step": 102
780
+ },
781
+ {
782
+ "epoch": 1.6,
783
+ "grad_norm": 0.1357404738664627,
784
+ "learning_rate": 0.0001891006524188368,
785
+ "loss": 1.9264,
786
+ "step": 103
787
+ },
788
+ {
789
+ "epoch": 1.62,
790
+ "grad_norm": 0.13309913873672485,
791
+ "learning_rate": 0.00018886946871873856,
792
+ "loss": 1.9505,
793
+ "step": 104
794
+ },
795
+ {
796
+ "epoch": 1.64,
797
+ "grad_norm": 0.13994307816028595,
798
+ "learning_rate": 0.00018863600326884082,
799
+ "loss": 2.0543,
800
+ "step": 105
801
+ },
802
+ {
803
+ "epoch": 1.65,
804
+ "grad_norm": 0.147433340549469,
805
+ "learning_rate": 0.00018840026206343784,
806
+ "loss": 2.0231,
807
+ "step": 106
808
+ },
809
+ {
810
+ "epoch": 1.67,
811
+ "grad_norm": 0.13546781241893768,
812
+ "learning_rate": 0.00018816225115525454,
813
+ "loss": 1.8892,
814
+ "step": 107
815
+ },
816
+ {
817
+ "epoch": 1.68,
818
+ "grad_norm": 0.13406571745872498,
819
+ "learning_rate": 0.0001879219766552911,
820
+ "loss": 1.8828,
821
+ "step": 108
822
+ },
823
+ {
824
+ "epoch": 1.7,
825
+ "grad_norm": 0.14394783973693848,
826
+ "learning_rate": 0.00018767944473266614,
827
+ "loss": 1.938,
828
+ "step": 109
829
+ },
830
+ {
831
+ "epoch": 1.72,
832
+ "grad_norm": 0.1423158198595047,
833
+ "learning_rate": 0.00018743466161445823,
834
+ "loss": 1.8268,
835
+ "step": 110
836
+ },
837
+ {
838
+ "epoch": 1.73,
839
+ "grad_norm": 0.2636297345161438,
840
+ "learning_rate": 0.00018718763358554607,
841
+ "loss": 1.8625,
842
+ "step": 111
843
+ },
844
+ {
845
+ "epoch": 1.75,
846
+ "grad_norm": 0.14624255895614624,
847
+ "learning_rate": 0.0001869383669884471,
848
+ "loss": 1.9392,
849
+ "step": 112
850
+ },
851
+ {
852
+ "epoch": 1.75,
853
+ "eval_loss": 1.9756392240524292,
854
+ "eval_runtime": 587.7368,
855
+ "eval_samples_per_second": 0.352,
856
+ "eval_steps_per_second": 0.352,
857
+ "step": 112
858
+ },
859
+ {
860
+ "epoch": 1.76,
861
+ "grad_norm": 0.14748816192150116,
862
+ "learning_rate": 0.0001866868682231547,
863
+ "loss": 1.9757,
864
+ "step": 113
865
+ },
866
+ {
867
+ "epoch": 1.78,
868
+ "grad_norm": 0.16464634239673615,
869
+ "learning_rate": 0.00018643314374697378,
870
+ "loss": 1.96,
871
+ "step": 114
872
+ },
873
+ {
874
+ "epoch": 1.79,
875
+ "grad_norm": 0.1459386795759201,
876
+ "learning_rate": 0.00018617720007435497,
877
+ "loss": 1.9337,
878
+ "step": 115
879
+ },
880
+ {
881
+ "epoch": 1.81,
882
+ "grad_norm": 0.1428644359111786,
883
+ "learning_rate": 0.00018591904377672757,
884
+ "loss": 1.7804,
885
+ "step": 116
886
+ },
887
+ {
888
+ "epoch": 1.83,
889
+ "grad_norm": 0.14610743522644043,
890
+ "learning_rate": 0.00018565868148233053,
891
+ "loss": 1.9056,
892
+ "step": 117
893
+ },
894
+ {
895
+ "epoch": 1.84,
896
+ "grad_norm": 0.14204370975494385,
897
+ "learning_rate": 0.00018539611987604258,
898
+ "loss": 1.97,
899
+ "step": 118
900
+ },
901
+ {
902
+ "epoch": 1.86,
903
+ "grad_norm": 0.14234338700771332,
904
+ "learning_rate": 0.00018513136569921023,
905
+ "loss": 1.9025,
906
+ "step": 119
907
+ },
908
+ {
909
+ "epoch": 1.87,
910
+ "grad_norm": 0.1486772745847702,
911
+ "learning_rate": 0.00018486442574947511,
912
+ "loss": 1.9135,
913
+ "step": 120
914
+ },
915
+ {
916
+ "epoch": 1.89,
917
+ "grad_norm": 0.1450343132019043,
918
+ "learning_rate": 0.000184595306880599,
919
+ "loss": 1.8578,
920
+ "step": 121
921
+ },
922
+ {
923
+ "epoch": 1.91,
924
+ "grad_norm": 0.140796959400177,
925
+ "learning_rate": 0.00018432401600228823,
926
+ "loss": 1.9178,
927
+ "step": 122
928
+ },
929
+ {
930
+ "epoch": 1.92,
931
+ "grad_norm": 0.14083623886108398,
932
+ "learning_rate": 0.00018405056008001603,
933
+ "loss": 1.7776,
934
+ "step": 123
935
+ },
936
+ {
937
+ "epoch": 1.94,
938
+ "grad_norm": 0.1653621792793274,
939
+ "learning_rate": 0.00018377494613484378,
940
+ "loss": 1.8844,
941
+ "step": 124
942
+ },
943
+ {
944
+ "epoch": 1.95,
945
+ "grad_norm": 0.156838059425354,
946
+ "learning_rate": 0.00018349718124324076,
947
+ "loss": 1.9659,
948
+ "step": 125
949
+ },
950
+ {
951
+ "epoch": 1.97,
952
+ "grad_norm": 0.14624595642089844,
953
+ "learning_rate": 0.0001832172725369024,
954
+ "loss": 1.9813,
955
+ "step": 126
956
+ }
957
+ ],
958
+ "logging_steps": 1,
959
+ "max_steps": 630,
960
+ "num_input_tokens_seen": 0,
961
+ "num_train_epochs": 10,
962
+ "save_steps": 63,
963
+ "total_flos": 7.12910688623788e+17,
964
+ "train_batch_size": 1,
965
+ "trial_name": null,
966
+ "trial_params": null
967
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b229b410d45c1ffaa74cae9c708878bd2f31fe56b341bcd9c93f5f789438a6a
3
+ size 5560