Erland commited on
Commit
b1970de
1 Parent(s): 06a23cf

Second Commit - More steps and more Env

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 240.15 +/- 41.01
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 284.89 +/- 20.10
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa54a8fe440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa54a8fe4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa54a8fe560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa54a8fe5f0>", "_build": "<function ActorCriticPolicy._build at 0x7fa54a8fe680>", "forward": "<function ActorCriticPolicy.forward at 0x7fa54a8fe710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa54a8fe7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa54a8fe830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa54a8fe8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa54a8fe950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa54a8fe9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa54a93bd50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 24, "num_timesteps": 1032192, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651690471.5116465, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAJqFUDzseZs/zvGIPVE//r6DGHS8How/vQAAAAAAAAAAM+V4PRqkmD/1BWk+zQUev+qRPD1SSM88AAAAAAAAAAAgiBa+4RjAum7LKj4BNye+kv/Iu5MB2D4AAIA/AAAAAMDktr0I05A/TrZavn4ME7/T3K+92W2DvQAAAAAAAAAA2uzPvU/rB7zo12I+3hJXPQfeZ73vDC4+AACAPwAAAACzcD49xEKqPwWU9T2+hAi/BtQ3ParvD70AAAAAAAAAAArrWL6055s+b/IJPltDv75B8a+9dGeIPQAAAAAAAAAAra9Fvqbygz/SBHC+El/ZvvigBr54Hg29AAAAAAAAAAAArMs8KQRwup7vnjhk55szvbEkO8BlurcAAIA/AACAP3PEhT0E5WE+bjVNPV50er7rMSA9szxAPQAAAAAAAAAAMxsavb3oZTydiWk+B8Buvo11WT2KGcs9AAAAAAAAAAAA2Rg94Tyiuk9GoLvuChQ5bjwXut25JzoAAIA/AACAP+OPYL5SAAQ/Joy9PKAitr5zY4i9GIt0PQAAAAAAAAAAzZDoO252iD70QQo+CULYvuff3L1S71I9AAAAAAAAAACjz4u+7jpFP3vPML67Ttm+pzKKvrM6mTwAAAAAAAAAALqxLz4HOAo+UpJqvkPqsr5rhjU9R+C1PAAAAAAAAAAAAAtAvo73rrzGc+s4nxKBN9eaFz7CMSK4AACAPwAAgD8AtI88FNqTvBLv2LzZdl09KWqhPd5M3DsAAIA/AACAP8CtgT2Saq88YvTtvWZqer5oNYE8jCnJvAAAAAAAAAAAs8WavawX7DwaGSw+JFMxvjRvsDyo6qE8AAAAAAAAAAAa+J6+0A6xPo41bD4nUou+k5umvYBXIT0AAAAAAAAAAE3Cmr1cW3e6/r34tXIVHrHnp406JjodNQAAgD8AAIA/AK4OvfaPdry2Ka+9vqh8vJYH3j2yKEw9AACAPwAAgD+zjbM9w5EouoiIabN6YIGuFgv5uT8csjMAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLGEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWViwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.032192, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0A1N2Wk8c0CUhpRSlIwBbJRL8IwBdJRHQLR2eTdtVJd1fZQoaAZoCWgPQwjz/6ojR4ZGQJSGlFKUaBVLpWgWR0C0domLpA2RdX2UKGgGaAloD0MIchjMX2GucUCUhpRSlGgVS7toFkdAtHaeL/CIlHV9lChoBmgJaA9DCN+/eXHiQ3JAlIaUUpRoFU0bAWgWR0C0dqDyvs7ddX2UKGgGaAloD0MI1zIZjmcDcUCUhpRSlGgVS7toFkdAtHa4F8ohIXV9lChoBmgJaA9DCN1ELc1tcHJAlIaUUpRoFU0AAWgWR0C0drhL9MsZdX2UKGgGaAloD0MIbhlwlpJFb0CUhpRSlGgVS9RoFkdAtHbjYwqRU3V9lChoBmgJaA9DCJVHN8Iinm9AlIaUUpRoFU0MAWgWR0C0du78rI5pdX2UKGgGaAloD0MIvcKC+8Fsc0CUhpRSlGgVTQUBaBZHQLR296BiCrd1fZQoaAZoCWgPQwi2aWyvRfNyQJSGlFKUaBVNMQFoFkdAtHcHOW0JGHV9lChoBmgJaA9DCK2m64mudXBAlIaUUpRoFUv1aBZHQLR3Jx1PnCB1fZQoaAZoCWgPQwj0p43qdDBwQJSGlFKUaBVLx2gWR0C0d0v2TPjXdX2UKGgGaAloD0MIJNV3ftEsckCUhpRSlGgVS+ZoFkdAtHfq2sq8UXV9lChoBmgJaA9DCHRC6KCL03NAlIaUUpRoFU0BAWgWR0C0d/KqKgqWdX2UKGgGaAloD0MIPQtCeR/YcUCUhpRSlGgVTQwBaBZHQLR38uR9w3p1fZQoaAZoCWgPQwhNMJxrGPtwQJSGlFKUaBVL0GgWR0C0eAH6l+EzdX2UKGgGaAloD0MIMGZLVgVvcECUhpRSlGgVS8VoFkdAtHglFXq7iHV9lChoBmgJaA9DCOAT61T5HjlAlIaUUpRoFUu5aBZHQLR4LOSGJvZ1fZQoaAZoCWgPQwilFkom5/9yQJSGlFKUaBVL7GgWR0C0eDoO6NEPdX2UKGgGaAloD0MIKV/QQoLUckCUhpRSlGgVTRoBaBZHQLR4PAavRqp1fZQoaAZoCWgPQwh2pWWkXmRwQJSGlFKUaBVLuGgWR0C0eGSyUs4DdX2UKGgGaAloD0MIkuf6PtxPcECUhpRSlGgVTQUBaBZHQLR4jVmBe5Z1fZQoaAZoCWgPQwgK9Ik8SZZHQJSGlFKUaBVLs2gWR0C0eJlIiC8OdX2UKGgGaAloD0MIGjVfJV8AcECUhpRSlGgVS/FoFkdAtHigN/e+EnV9lChoBmgJaA9DCHJsPUM4rnFAlIaUUpRoFU1dAWgWR0C0eRCNKh+OdX2UKGgGaAloD0MISRRa1j0pc0CUhpRSlGgVTRUBaBZHQLR5GU/fO2R1fZQoaAZoCWgPQwi5MxMMZ19wQJSGlFKUaBVNDAFoFkdAtHkZi+cpb3V9lChoBmgJaA9DCLZI2o0+vW1AlIaUUpRoFUvRaBZHQLR5Qb4agmJ1fZQoaAZoCWgPQwgKStHKvWFxQJSGlFKUaBVNewJoFkdAtHlWl67dznV9lChoBmgJaA9DCI1GPq84xXBAlIaUUpRoFU0tAWgWR0C0eWTFAE+xdX2UKGgGaAloD0MIAkuuYjEsckCUhpRSlGgVTRgBaBZHQLR5gfp2U0N1fZQoaAZoCWgPQwjvVwG+W51yQJSGlFKUaBVNEwFoFkdAtHmQWVNYbXV9lChoBmgJaA9DCAXgn1KlR3BAlIaUUpRoFUvIaBZHQLR55EAHVwx1fZQoaAZoCWgPQwgdIJijR0hyQJSGlFKUaBVNKAFoFkdAtHnppcophHV9lChoBmgJaA9DCDi9i/djDnFAlIaUUpRoFUvVaBZHQLR6Q38n/kx1fZQoaAZoCWgPQwiLw5lfjfBxQJSGlFKUaBVL4GgWR0C0elSMglnidX2UKGgGaAloD0MIAI3Spb9KcECUhpRSlGgVTQ0BaBZHQLR6ivGZNPB1fZQoaAZoCWgPQwiwWMNFrrhyQJSGlFKUaBVNhAFoFkdAtHqT0pVjqnV9lChoBmgJaA9DCOkLIef96XBAlIaUUpRoFUvNaBZHQLR6oVuJk5J1fZQoaAZoCWgPQwgTDyibsh9xQJSGlFKUaBVNJQFoFkdAtHrXcFhXsHV9lChoBmgJaA9DCCEhyhe0NnJAlIaUUpRoFU0GAWgWR0C0ewbdepn6dX2UKGgGaAloD0MI1QRR9wFJckCUhpRSlGgVS8NoFkdAtHsTnuAqeHV9lChoBmgJaA9DCOcAwRw9sXJAlIaUUpRoFUv6aBZHQLR7FSJ0nw51fZQoaAZoCWgPQwh+Oh4zUGtxQJSGlFKUaBVNNQFoFkdAtHtXDFZPmHV9lChoBmgJaA9DCPG8VGyM1nJAlIaUUpRoFU0RAWgWR0C0e2qdtl7MdX2UKGgGaAloD0MI5Eo9C8KmcECUhpRSlGgVS9NoFkdAtHt4aNuLrHV9lChoBmgJaA9DCHU5JSCmP2FAlIaUUpRoFU3oA2gWR0C0e55MQEpzdX2UKGgGaAloD0MI8DZvnBSccECUhpRSlGgVS/RoFkdAtHujlbNbDHV9lChoBmgJaA9DCEga3NYWyEdAlIaUUpRoFUvNaBZHQLR7sFQEZBN1fZQoaAZoCWgPQwiULv1LErxxQJSGlFKUaBVL/mgWR0C0e7v2wmmcdX2UKGgGaAloD0MIFokJanjub0CUhpRSlGgVS+ZoFkdAtHvAh6jWTXV9lChoBmgJaA9DCCkGSDSBKlVAlIaUUpRoFUuKaBZHQLR8EKlHjId1fZQoaAZoCWgPQwjSpuoeGbpwQJSGlFKUaBVNoAFoFkdAtHwaY1He8HV9lChoBmgJaA9DCGmLa3wmnHFAlIaUUpRoFUvXaBZHQLR8KpNsWO91fZQoaAZoCWgPQwhXCKuxhN1OQJSGlFKUaBVLpmgWR0C0fEYhllK9dX2UKGgGaAloD0MIU8+CUF5cckCUhpRSlGgVTRwBaBZHQLR8TTufEn91fZQoaAZoCWgPQwhWf4RhANpxQJSGlFKUaBVNFQFoFkdAtHxmIrOJL3V9lChoBmgJaA9DCBvxZDdz6nJAlIaUUpRoFU0cAWgWR0C0fMZ9qk/KdX2UKGgGaAloD0MIFXKlnkWHckCUhpRSlGgVTQsBaBZHQLR9BdZ7ojh1fZQoaAZoCWgPQwhne/SG++RuQJSGlFKUaBVLzGgWR0C0fQ7hR64UdX2UKGgGaAloD0MIdovAWN/lbkCUhpRSlGgVTRQBaBZHQLR9DhqTKT11fZQoaAZoCWgPQwjG/NzQ1OxyQJSGlFKUaBVNFwFoFkdAtH1VVGTcI3V9lChoBmgJaA9DCLadtkZEg3FAlIaUUpRoFUv1aBZHQLR9ecuanaZ1fZQoaAZoCWgPQwjLgR5qG85wQJSGlFKUaBVNFwFoFkdAtH2dEb5uZXV9lChoBmgJaA9DCCeEDrpEPXFAlIaUUpRoFUvraBZHQLR9wG6wt8N1fZQoaAZoCWgPQwhqFf2hme1yQJSGlFKUaBVL+2gWR0C0fd5lOGj9dX2UKGgGaAloD0MI/b/qyNFrckCUhpRSlGgVS/VoFkdAtH4DDVH4GnV9lChoBmgJaA9DCHHjFvOzFXFAlIaUUpRoFU0zAWgWR0C0fhZGax5cdX2UKGgGaAloD0MIVydnKK5tcUCUhpRSlGgVTQABaBZHQLR+Mv+fh/B1fZQoaAZoCWgPQwgwurw53NJwQJSGlFKUaBVNIgFoFkdAtH41g6U7jnV9lChoBmgJaA9DCM4AF2RLeHNAlIaUUpRoFU0PAWgWR0C0fku5OJtSdX2UKGgGaAloD0MIGjT0T3DSckCUhpRSlGgVTQ8BaBZHQLR+ZBFNL151fZQoaAZoCWgPQwjOGVHamx1yQJSGlFKUaBVL4WgWR0C0fmaCL/CJdX2UKGgGaAloD0MIOIWVCirmcUCUhpRSlGgVTQABaBZHQLR+nAKv3al1fZQoaAZoCWgPQwjzkCkfwqdwQJSGlFKUaBVL4WgWR0C0fqtRBNVSdX2UKGgGaAloD0MIECBDx84rcECUhpRSlGgVS7VoFkdAtH7qDEm6XnV9lChoBmgJaA9DCMVwdQDEhHJAlIaUUpRoFU0QAWgWR0C0fwqur6tUdX2UKGgGaAloD0MIQQ5KmGlobECUhpRSlGgVTTUBaBZHQLR/MpXIU8F1fZQoaAZoCWgPQwjKcDyfQRFwQJSGlFKUaBVNJAFoFkdAtH84n+hoNHV9lChoBmgJaA9DCLJmZJA7dHBAlIaUUpRoFUvBaBZHQLR/U5/LDAJ1fZQoaAZoCWgPQwhBguLHGHRxQJSGlFKUaBVL62gWR0C0f26fjCHidX2UKGgGaAloD0MIvjCZKtglcUCUhpRSlGgVS/ZoFkdAtH+Rp1zQu3V9lChoBmgJaA9DCPJdSl2yIHBAlIaUUpRoFUvVaBZHQLR/pUO/cnF1fZQoaAZoCWgPQwiKVYMwN0lxQJSGlFKUaBVNjgFoFkdAtH+ueUY8+3V9lChoBmgJaA9DCIY8ghup9nBAlIaUUpRoFU0eAWgWR0C0f678rI5pdX2UKGgGaAloD0MIAb9GkiC0NUCUhpRSlGgVS6NoFkdAtH/l2gWadHV9lChoBmgJaA9DCCntDb4weG1AlIaUUpRoFUvlaBZHQLR/6F9roGJ1fZQoaAZoCWgPQwh2/u2yH5NxQJSGlFKUaBVL62gWR0C0gBa3qiXZdX2UKGgGaAloD0MIOxvyz8w3ckCUhpRSlGgVS+FoFkdAtIAY9Pk7wXV9lChoBmgJaA9DCAUVVb/SUHFAlIaUUpRoFUv2aBZHQLSAdBPbfxd1fZQoaAZoCWgPQwhYqDXNO2xyQJSGlFKUaBVLwWgWR0C0gIPCyhSMdX2UKGgGaAloD0MI6rDCLR8NTkCUhpRSlGgVTegDaBZHQLSAiR28qWl1fZQoaAZoCWgPQwhd4PJYcz9zQJSGlFKUaBVL/2gWR0C0gJxBzFMqdX2UKGgGaAloD0MI5ULlX0vEbkCUhpRSlGgVS+VoFkdAtICp+OOsDHV9lChoBmgJaA9DCLzLRXyn1nFAlIaUUpRoFU0BAWgWR0C0gOwYxcmjdX2UKGgGaAloD0MIBK+WO3MPcECUhpRSlGgVTRsBaBZHQLSA/6/qPfd1fZQoaAZoCWgPQwj3Hi457l1xQJSGlFKUaBVNMQFoFkdAtIE17x/d7HV9lChoBmgJaA9DCBA+lGhJx21AlIaUUpRoFUvJaBZHQLSBSEXLvCx1fZQoaAZoCWgPQwhkXdxGgw1uQJSGlFKUaBVL82gWR0C0gU2pVCHAdX2UKGgGaAloD0MIR3L5D2llcUCUhpRSlGgVS7toFkdAtIFk6PsAvXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 210, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa54a8fe440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa54a8fe4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa54a8fe560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa54a8fe5f0>", "_build": "<function ActorCriticPolicy._build at 0x7fa54a8fe680>", "forward": "<function ActorCriticPolicy.forward at 0x7fa54a8fe710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa54a8fe7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa54a8fe830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa54a8fe8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa54a8fe950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa54a8fe9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa54a93bd50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 24, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651692422.5956533, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAKBuKz6Hv1k/rbvBPhkjQ7+acrE+ZSJ9PgAAAAAAAAAAZsdWvYXzxrmuShI+lUZDsYktljsaZbmyAACAPwAAgD/aprm9XP5/vAYpQj587Ni8MNm4vW0qTr4AAIA/AAAAADOmyD04C4E/YvGNPlppQr/7y1I+0BNRPgAAAAAAAAAADYeIvSmgT7osejw8CZuKs2j6sTtE8CkzAACAPwAAgD/AmcU9FF+IO1AmYL5ez6q+1G2CvfdHDb0AAIA/AAAAADMpML2t/4o/EJ0VvlsSV79QdrO96wPEvQAAAAAAAAAAQEq2PfSkCD+5ATQ9bbghvxFiKD6emKC9AAAAAAAAAAAArE+8wO2zP92W5L3AKRK+umvYu17Ukb0AAAAAAAAAACa+Mj40KCw/2qTbPeFeH7/Hb7I+5r3puwAAAAAAAAAAJm/zPbjPl7sQdQ2+CaJmvkIlWrzQWs0+AACAPwAAgD9mKIg9yDKjPwr7iz5n6g6/f/DPPcxBpj0AAAAAAAAAAM0O+T1Ey3U/vgMqPrMiP7/9PWM+tJA2PgAAAAAAAAAA2nbAvRwsEbwvCAY+pkuAPbzYybyaZzk8AACAPwAAAABmpyW94/W7P3n+k75OzhU9xw1avNpq1r0AAAAAAAAAAM3EcLx7/oa6FNZDt6YoL7LKZps5aItkNgAAgD8AAIA/Db/QvfU1kT81Awq/1+Jpv0SH/L2uKLO+AAAAAAAAAABN3KI9A/a/P9BikT7UeE6+VVSAPS4doj0AAAAAAAAAADODk7uz0bQ/bXjpvmVjnT1rJ6s7tYnTPQAAAAAAAAAAc2gZPrbkPbzF2bC6yRXcO6jEnr0hpou8AACAPwAAgD+rlI++ONQ5P5CFBT20zQu/h/HXvjSfRj4AAAAAAAAAABO6Qr7u1YI/p6bHvo67E78Uc86+PjV1vgAAAAAAAAAAgJ3VvfF6ejwxdkU+oi1kvmHjDD3OcRe9AAAAAAAAAADNYiw8rrGDuhj+ybZkCdGxtYlZO7Py6zUAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLGEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWViwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINUHUfUD7cECUhpRSlIwBbJRLpowBdJRHQMAqoL5qM3t1fZQoaAZoCWgPQwjw3eaNUy5yQJSGlFKUaBVLu2gWR0DAKqSgh8pkdX2UKGgGaAloD0MIokYhyezGcUCUhpRSlGgVS8FoFkdAwCqoJAMUh3V9lChoBmgJaA9DCCi6LvzgmnFAlIaUUpRoFUuMaBZHQMAqrRp+MIh1fZQoaAZoCWgPQwhbfXVVoLFxQJSGlFKUaBVL02gWR0DAKrHP9kz5dX2UKGgGaAloD0MIRtPZyaCYc0CUhpRSlGgVS+BoFkdAwCrEPluFYnV9lChoBmgJaA9DCF1OCYiJknJAlIaUUpRoFUvBaBZHQMAqw9f1Hvt1fZQoaAZoCWgPQwiki00rBWRwQJSGlFKUaBVLrGgWR0DAKslGZuyedX2UKGgGaAloD0MIPGh23dtRcUCUhpRSlGgVS4xoFkdAwCrJ0xubZ3V9lChoBmgJaA9DCGkCRSwinnNAlIaUUpRoFUu3aBZHQMAqy4qG1x91fZQoaAZoCWgPQwj4GKw41fpyQJSGlFKUaBVLt2gWR0DAKs0faHsUdX2UKGgGaAloD0MIIqev56u0cUCUhpRSlGgVS6VoFkdAwCrggh8pkXV9lChoBmgJaA9DCLcpHhcVFHFAlIaUUpRoFUuPaBZHQMAq5xYRuj11fZQoaAZoCWgPQwgi/Iug8TxyQJSGlFKUaBVLs2gWR0DAKujdDYywdX2UKGgGaAloD0MIwJKrWHy9c0CUhpRSlGgVTQgBaBZHQMAq8imMwUR1fZQoaAZoCWgPQwhuFcRAF1FyQJSGlFKUaBVL5mgWR0DAKweDg62fdX2UKGgGaAloD0MIgLVq10QYcECUhpRSlGgVS5toFkdAwCsKGfwqiHV9lChoBmgJaA9DCHkkXp5O+3BAlIaUUpRoFUuIaBZHQMArCzxoZht1fZQoaAZoCWgPQwgQ6Eza1MpwQJSGlFKUaBVLkmgWR0DAKxKJIlMRdX2UKGgGaAloD0MIuFZ72EvacUCUhpRSlGgVS8toFkdAwCsTx0+1SnV9lChoBmgJaA9DCAzmr5D5inBAlIaUUpRoFUutaBZHQMArFh7eEZl1fZQoaAZoCWgPQwjKGYo73stwQJSGlFKUaBVLs2gWR0DAKyAdjoZAdX2UKGgGaAloD0MIzehHw+n5cUCUhpRSlGgVS5BoFkdAwCsjQKKHf3V9lChoBmgJaA9DCCkGSDQBTm5AlIaUUpRoFUubaBZHQMArKKRdQfp1fZQoaAZoCWgPQwip9X6jnWxyQJSGlFKUaBVLqWgWR0DAKywUFjd6dX2UKGgGaAloD0MIK08g7BSlb0CUhpRSlGgVS5VoFkdAwCtDHktEonV9lChoBmgJaA9DCPAzLhzIMXJAlIaUUpRoFUvGaBZHQMArRaKcd5p1fZQoaAZoCWgPQwj+0w0UeAxxQJSGlFKUaBVLyGgWR0DAK0pwKjSHdX2UKGgGaAloD0MIrOY5Ih/VcUCUhpRSlGgVS7toFkdAwCtRTYukDnV9lChoBmgJaA9DCPSG+8gtYm9AlIaUUpRoFUuNaBZHQMArWXpGFzx1fZQoaAZoCWgPQwgmpgux+kxxQJSGlFKUaBVLuGgWR0DAK2Dv/io9dX2UKGgGaAloD0MIbApkdlZPckCUhpRSlGgVS9RoFkdAwCtiDbrTpnV9lChoBmgJaA9DCPAxWHGqa3FAlIaUUpRoFUuuaBZHQMArYeJpFkR1fZQoaAZoCWgPQwi5pdWQeDByQJSGlFKUaBVLsmgWR0DAK2H2Xb/PdX2UKGgGaAloD0MIrBkZ5O6NcECUhpRSlGgVS8hoFkdAwCt1dsSCe3V9lChoBmgJaA9DCGAA4UOJyG9AlIaUUpRoFUumaBZHQMArdnfVI7N1fZQoaAZoCWgPQwhJLv8hPaFxQJSGlFKUaBVLs2gWR0DAK39iDujRdX2UKGgGaAloD0MIW3ufqkKKc0CUhpRSlGgVS9xoFkdAwCuD5WRzR3V9lChoBmgJaA9DCKfLYmIzDXBAlIaUUpRoFUuxaBZHQMAriG0NSZV1fZQoaAZoCWgPQwjoLR7eMz5zQJSGlFKUaBVLomgWR0DAK5S++M6zdX2UKGgGaAloD0MI0o2wqMiwckCUhpRSlGgVS65oFkdAwCuexASnL3V9lChoBmgJaA9DCHWRQll46XFAlIaUUpRoFUupaBZHQMArouAiFCd1fZQoaAZoCWgPQwjPhCaJ5f1yQJSGlFKUaBVLvWgWR0DAK7LR+jM3dX2UKGgGaAloD0MIxY1bzM9FcECUhpRSlGgVS6BoFkdAwCuz3i704HV9lChoBmgJaA9DCAPOUrKcQXNAlIaUUpRoFUvAaBZHQMAruDyOJch1fZQoaAZoCWgPQwgQ5nYvd6ZyQJSGlFKUaBVLuGgWR0DAK79Ey+HrdX2UKGgGaAloD0MIIJxPHauwcUCUhpRSlGgVS8doFkdAwCvIhL5AQnV9lChoBmgJaA9DCENWt3pOxHJAlIaUUpRoFUviaBZHQMAryGyX2M91fZQoaAZoCWgPQwhE393K0jZwQJSGlFKUaBVLrmgWR0DAK9ba4+bFdX2UKGgGaAloD0MIp3Sw/g/YcUCUhpRSlGgVS9RoFkdAwCvb4bjtHHV9lChoBmgJaA9DCAosgCnDBHBAlIaUUpRoFUu8aBZHQMAr5HmaH9F1fZQoaAZoCWgPQwjEzhQ6LxxwQJSGlFKUaBVLoWgWR0DAK+lUKiPAdX2UKGgGaAloD0MIUYcVbjm+cECUhpRSlGgVS6NoFkdAwCvp/5LytnV9lChoBmgJaA9DCHnMQGX8M3BAlIaUUpRoFUu4aBZHQMAr9BmoR7J1fZQoaAZoCWgPQwjD8BEx5exwQJSGlFKUaBVLmGgWR0DAK/VSydFwdX2UKGgGaAloD0MIKlQ3F/8vcUCUhpRSlGgVS7FoFkdAwCv2H9m6G3V9lChoBmgJaA9DCNTX8zULVXBAlIaUUpRoFUuKaBZHQMAr+Chew9t1fZQoaAZoCWgPQwg/br98Mn9xQJSGlFKUaBVLu2gWR0DAK/4RGtp3dX2UKGgGaAloD0MIDTm2nmEgcUCUhpRSlGgVS6xoFkdAwCwGM/hVEXV9lChoBmgJaA9DCIQtdvvsvnJAlIaUUpRoFUviaBZHQMAsCAoXsPd1fZQoaAZoCWgPQwgNAFXceOtyQJSGlFKUaBVL4WgWR0DALA1znzQNdX2UKGgGaAloD0MILCgMyvTZcECUhpRSlGgVS5toFkdAwCwjiBGx2XV9lChoBmgJaA9DCNO84xTd2nJAlIaUUpRoFUvGaBZHQMAsJX7Lt/p1fZQoaAZoCWgPQwheg770tqlxQJSGlFKUaBVLsmgWR0DALDMygwoLdX2UKGgGaAloD0MINUHUfYClckCUhpRSlGgVS8toFkdAwCwzMxoIwHV9lChoBmgJaA9DCIQPJVryTHNAlIaUUpRoFUvUaBZHQMAsRvi1iON1fZQoaAZoCWgPQwhXtDnOLSpxQJSGlFKUaBVLsWgWR0DALFLfYSQHdX2UKGgGaAloD0MIAkaXN4f4cECUhpRSlGgVS6poFkdAwCxXGyX2NHV9lChoBmgJaA9DCHWxaaUQZ3FAlIaUUpRoFUuWaBZHQMAsWpRoAXF1fZQoaAZoCWgPQwjY8PRK2fZxQJSGlFKUaBVLy2gWR0DALF46hg3MdX2UKGgGaAloD0MI/5Hp0OkTb0CUhpRSlGgVS5xoFkdAwCxo1cdHUnV9lChoBmgJaA9DCIRFRZwO/3BAlIaUUpRoFUuYaBZHQMAsaxBmf5F1fZQoaAZoCWgPQwj12JYBp3RyQJSGlFKUaBVLzWgWR0DALHUhNdqtdX2UKGgGaAloD0MI2QdZFgzgc0CUhpRSlGgVS+doFkdAwCx2+otL+XV9lChoBmgJaA9DCO8gdqaQWnNAlIaUUpRoFUviaBZHQMAsdwHRkVh1fZQoaAZoCWgPQwh01NFx9XtyQJSGlFKUaBVLm2gWR0DALHlGViWndX2UKGgGaAloD0MIKJ1IMJXzcECUhpRSlGgVS9JoFkdAwCyGxIre7HV9lChoBmgJaA9DCPD3i9kSOXJAlIaUUpRoFUuvaBZHQMAsh4mCyyF1fZQoaAZoCWgPQwhFm+PcZmlxQJSGlFKUaBVLvGgWR0DALIddonKGdX2UKGgGaAloD0MIVYmyt1QhckCUhpRSlGgVS7toFkdAwCySjJMg2nV9lChoBmgJaA9DCGGKcmn8qHFAlIaUUpRoFUugaBZHQMAslFsxfv51fZQoaAZoCWgPQwg6H54lyDtxQJSGlFKUaBVLtmgWR0DALJZ95QgtdX2UKGgGaAloD0MIZr6Dnzi5ckCUhpRSlGgVS8RoFkdAwCycKvV3EHV9lChoBmgJaA9DCGnEzD4P1G9AlIaUUpRoFUu2aBZHQMAsoSjpLVZ1fZQoaAZoCWgPQwjgEoB/imFyQJSGlFKUaBVLvGgWR0DALKRMDfWMdX2UKGgGaAloD0MIKUF/oce3ckCUhpRSlGgVS55oFkdAwCypqesgdXV9lChoBmgJaA9DCNeGinH+1nFAlIaUUpRoFUvGaBZHQMAs2FK02Lp1fZQoaAZoCWgPQwgoSddMfm9wQJSGlFKUaBVLqmgWR0DALOTVtoBadX2UKGgGaAloD0MII0xRLg22cECUhpRSlGgVS7NoFkdAwCzpT2nKn3V9lChoBmgJaA9DCDuKc9RRbW9AlIaUUpRoFUuTaBZHQMAs8gdOqNp1fZQoaAZoCWgPQwi4y37d6Z1wQJSGlFKUaBVLuWgWR0DALPaTOgQIdX2UKGgGaAloD0MIX3r7c9FKSUCUhpRSlGgVS1poFkdAwCz4j7ALzHV9lChoBmgJaA9DCKYPXVDfukdAlIaUUpRoFUtqaBZHQMAs/R2B8QZ1fZQoaAZoCWgPQwiO5V31QDVwQJSGlFKUaBVLnGgWR0DALPzjR2KVdX2UKGgGaAloD0MIrmad8b0+c0CUhpRSlGgVS9doFkdAwCz+Oqebu3V9lChoBmgJaA9DCMZOeAlOz3NAlIaUUpRoFUvwaBZHQMAs/6hHskZ1fZQoaAZoCWgPQwghOgSOBGVxQJSGlFKUaBVLt2gWR0DALQVHe7+UdX2UKGgGaAloD0MIH/MBgQ4TckCUhpRSlGgVS69oFkdAwC0IhGH58HV9lChoBmgJaA9DCP5HpkOnUG5AlIaUUpRoFUubaBZHQMAtCynLq2V1fZQoaAZoCWgPQwgQJVryOKJzQJSGlFKUaBVL1mgWR0DALRJUWEbpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 410, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f4f96b42ec62301f83758296fd869aef13c8afb0fd90a159fd7c02c262c95b4b
3
- size 144380
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8c37f28df688d0def43d9a3b9eafbd4f8fc25483febe4c3752afd8793221f5c
3
+ size 144329
ppo-LunarLander-v2/data CHANGED
@@ -42,40 +42,40 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 24,
45
- "num_timesteps": 1032192,
46
- "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1651690471.5116465,
51
- "learning_rate": 0.001,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
- ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAJqFUDzseZs/zvGIPVE//r6DGHS8How/vQAAAAAAAAAAM+V4PRqkmD/1BWk+zQUev+qRPD1SSM88AAAAAAAAAAAgiBa+4RjAum7LKj4BNye+kv/Iu5MB2D4AAIA/AAAAAMDktr0I05A/TrZavn4ME7/T3K+92W2DvQAAAAAAAAAA2uzPvU/rB7zo12I+3hJXPQfeZ73vDC4+AACAPwAAAACzcD49xEKqPwWU9T2+hAi/BtQ3ParvD70AAAAAAAAAAArrWL6055s+b/IJPltDv75B8a+9dGeIPQAAAAAAAAAAra9Fvqbygz/SBHC+El/ZvvigBr54Hg29AAAAAAAAAAAArMs8KQRwup7vnjhk55szvbEkO8BlurcAAIA/AACAP3PEhT0E5WE+bjVNPV50er7rMSA9szxAPQAAAAAAAAAAMxsavb3oZTydiWk+B8Buvo11WT2KGcs9AAAAAAAAAAAA2Rg94Tyiuk9GoLvuChQ5bjwXut25JzoAAIA/AACAP+OPYL5SAAQ/Joy9PKAitr5zY4i9GIt0PQAAAAAAAAAAzZDoO252iD70QQo+CULYvuff3L1S71I9AAAAAAAAAACjz4u+7jpFP3vPML67Ttm+pzKKvrM6mTwAAAAAAAAAALqxLz4HOAo+UpJqvkPqsr5rhjU9R+C1PAAAAAAAAAAAAAtAvo73rrzGc+s4nxKBN9eaFz7CMSK4AACAPwAAgD8AtI88FNqTvBLv2LzZdl09KWqhPd5M3DsAAIA/AACAP8CtgT2Saq88YvTtvWZqer5oNYE8jCnJvAAAAAAAAAAAs8WavawX7DwaGSw+JFMxvjRvsDyo6qE8AAAAAAAAAAAa+J6+0A6xPo41bD4nUou+k5umvYBXIT0AAAAAAAAAAE3Cmr1cW3e6/r34tXIVHrHnp406JjodNQAAgD8AAIA/AK4OvfaPdry2Ka+9vqh8vJYH3j2yKEw9AACAPwAAgD+zjbM9w5EouoiIabN6YIGuFgv5uT8csjMAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLGEsIhpSMAUOUdJRSlC4="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWViwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpQu"
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.032192,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVTBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0A1N2Wk8c0CUhpRSlIwBbJRL8IwBdJRHQLR2eTdtVJd1fZQoaAZoCWgPQwjz/6ojR4ZGQJSGlFKUaBVLpWgWR0C0domLpA2RdX2UKGgGaAloD0MIchjMX2GucUCUhpRSlGgVS7toFkdAtHaeL/CIlHV9lChoBmgJaA9DCN+/eXHiQ3JAlIaUUpRoFU0bAWgWR0C0dqDyvs7ddX2UKGgGaAloD0MI1zIZjmcDcUCUhpRSlGgVS7toFkdAtHa4F8ohIXV9lChoBmgJaA9DCN1ELc1tcHJAlIaUUpRoFU0AAWgWR0C0drhL9MsZdX2UKGgGaAloD0MIbhlwlpJFb0CUhpRSlGgVS9RoFkdAtHbjYwqRU3V9lChoBmgJaA9DCJVHN8Iinm9AlIaUUpRoFU0MAWgWR0C0du78rI5pdX2UKGgGaAloD0MIvcKC+8Fsc0CUhpRSlGgVTQUBaBZHQLR296BiCrd1fZQoaAZoCWgPQwi2aWyvRfNyQJSGlFKUaBVNMQFoFkdAtHcHOW0JGHV9lChoBmgJaA9DCK2m64mudXBAlIaUUpRoFUv1aBZHQLR3Jx1PnCB1fZQoaAZoCWgPQwj0p43qdDBwQJSGlFKUaBVLx2gWR0C0d0v2TPjXdX2UKGgGaAloD0MIJNV3ftEsckCUhpRSlGgVS+ZoFkdAtHfq2sq8UXV9lChoBmgJaA9DCHRC6KCL03NAlIaUUpRoFU0BAWgWR0C0d/KqKgqWdX2UKGgGaAloD0MIPQtCeR/YcUCUhpRSlGgVTQwBaBZHQLR38uR9w3p1fZQoaAZoCWgPQwhNMJxrGPtwQJSGlFKUaBVL0GgWR0C0eAH6l+EzdX2UKGgGaAloD0MIMGZLVgVvcECUhpRSlGgVS8VoFkdAtHglFXq7iHV9lChoBmgJaA9DCOAT61T5HjlAlIaUUpRoFUu5aBZHQLR4LOSGJvZ1fZQoaAZoCWgPQwilFkom5/9yQJSGlFKUaBVL7GgWR0C0eDoO6NEPdX2UKGgGaAloD0MIKV/QQoLUckCUhpRSlGgVTRoBaBZHQLR4PAavRqp1fZQoaAZoCWgPQwh2pWWkXmRwQJSGlFKUaBVLuGgWR0C0eGSyUs4DdX2UKGgGaAloD0MIkuf6PtxPcECUhpRSlGgVTQUBaBZHQLR4jVmBe5Z1fZQoaAZoCWgPQwgK9Ik8SZZHQJSGlFKUaBVLs2gWR0C0eJlIiC8OdX2UKGgGaAloD0MIGjVfJV8AcECUhpRSlGgVS/FoFkdAtHigN/e+EnV9lChoBmgJaA9DCHJsPUM4rnFAlIaUUpRoFU1dAWgWR0C0eRCNKh+OdX2UKGgGaAloD0MISRRa1j0pc0CUhpRSlGgVTRUBaBZHQLR5GU/fO2R1fZQoaAZoCWgPQwi5MxMMZ19wQJSGlFKUaBVNDAFoFkdAtHkZi+cpb3V9lChoBmgJaA9DCLZI2o0+vW1AlIaUUpRoFUvRaBZHQLR5Qb4agmJ1fZQoaAZoCWgPQwgKStHKvWFxQJSGlFKUaBVNewJoFkdAtHlWl67dznV9lChoBmgJaA9DCI1GPq84xXBAlIaUUpRoFU0tAWgWR0C0eWTFAE+xdX2UKGgGaAloD0MIAkuuYjEsckCUhpRSlGgVTRgBaBZHQLR5gfp2U0N1fZQoaAZoCWgPQwjvVwG+W51yQJSGlFKUaBVNEwFoFkdAtHmQWVNYbXV9lChoBmgJaA9DCAXgn1KlR3BAlIaUUpRoFUvIaBZHQLR55EAHVwx1fZQoaAZoCWgPQwgdIJijR0hyQJSGlFKUaBVNKAFoFkdAtHnppcophHV9lChoBmgJaA9DCDi9i/djDnFAlIaUUpRoFUvVaBZHQLR6Q38n/kx1fZQoaAZoCWgPQwiLw5lfjfBxQJSGlFKUaBVL4GgWR0C0elSMglnidX2UKGgGaAloD0MIAI3Spb9KcECUhpRSlGgVTQ0BaBZHQLR6ivGZNPB1fZQoaAZoCWgPQwiwWMNFrrhyQJSGlFKUaBVNhAFoFkdAtHqT0pVjqnV9lChoBmgJaA9DCOkLIef96XBAlIaUUpRoFUvNaBZHQLR6oVuJk5J1fZQoaAZoCWgPQwgTDyibsh9xQJSGlFKUaBVNJQFoFkdAtHrXcFhXsHV9lChoBmgJaA9DCCEhyhe0NnJAlIaUUpRoFU0GAWgWR0C0ewbdepn6dX2UKGgGaAloD0MI1QRR9wFJckCUhpRSlGgVS8NoFkdAtHsTnuAqeHV9lChoBmgJaA9DCOcAwRw9sXJAlIaUUpRoFUv6aBZHQLR7FSJ0nw51fZQoaAZoCWgPQwh+Oh4zUGtxQJSGlFKUaBVNNQFoFkdAtHtXDFZPmHV9lChoBmgJaA9DCPG8VGyM1nJAlIaUUpRoFU0RAWgWR0C0e2qdtl7MdX2UKGgGaAloD0MI5Eo9C8KmcECUhpRSlGgVS9NoFkdAtHt4aNuLrHV9lChoBmgJaA9DCHU5JSCmP2FAlIaUUpRoFU3oA2gWR0C0e55MQEpzdX2UKGgGaAloD0MI8DZvnBSccECUhpRSlGgVS/RoFkdAtHujlbNbDHV9lChoBmgJaA9DCEga3NYWyEdAlIaUUpRoFUvNaBZHQLR7sFQEZBN1fZQoaAZoCWgPQwiULv1LErxxQJSGlFKUaBVL/mgWR0C0e7v2wmmcdX2UKGgGaAloD0MIFokJanjub0CUhpRSlGgVS+ZoFkdAtHvAh6jWTXV9lChoBmgJaA9DCCkGSDSBKlVAlIaUUpRoFUuKaBZHQLR8EKlHjId1fZQoaAZoCWgPQwjSpuoeGbpwQJSGlFKUaBVNoAFoFkdAtHwaY1He8HV9lChoBmgJaA9DCGmLa3wmnHFAlIaUUpRoFUvXaBZHQLR8KpNsWO91fZQoaAZoCWgPQwhXCKuxhN1OQJSGlFKUaBVLpmgWR0C0fEYhllK9dX2UKGgGaAloD0MIU8+CUF5cckCUhpRSlGgVTRwBaBZHQLR8TTufEn91fZQoaAZoCWgPQwhWf4RhANpxQJSGlFKUaBVNFQFoFkdAtHxmIrOJL3V9lChoBmgJaA9DCBvxZDdz6nJAlIaUUpRoFU0cAWgWR0C0fMZ9qk/KdX2UKGgGaAloD0MIFXKlnkWHckCUhpRSlGgVTQsBaBZHQLR9BdZ7ojh1fZQoaAZoCWgPQwhne/SG++RuQJSGlFKUaBVLzGgWR0C0fQ7hR64UdX2UKGgGaAloD0MIdovAWN/lbkCUhpRSlGgVTRQBaBZHQLR9DhqTKT11fZQoaAZoCWgPQwjG/NzQ1OxyQJSGlFKUaBVNFwFoFkdAtH1VVGTcI3V9lChoBmgJaA9DCLadtkZEg3FAlIaUUpRoFUv1aBZHQLR9ecuanaZ1fZQoaAZoCWgPQwjLgR5qG85wQJSGlFKUaBVNFwFoFkdAtH2dEb5uZXV9lChoBmgJaA9DCCeEDrpEPXFAlIaUUpRoFUvraBZHQLR9wG6wt8N1fZQoaAZoCWgPQwhqFf2hme1yQJSGlFKUaBVL+2gWR0C0fd5lOGj9dX2UKGgGaAloD0MI/b/qyNFrckCUhpRSlGgVS/VoFkdAtH4DDVH4GnV9lChoBmgJaA9DCHHjFvOzFXFAlIaUUpRoFU0zAWgWR0C0fhZGax5cdX2UKGgGaAloD0MIVydnKK5tcUCUhpRSlGgVTQABaBZHQLR+Mv+fh/B1fZQoaAZoCWgPQwgwurw53NJwQJSGlFKUaBVNIgFoFkdAtH41g6U7jnV9lChoBmgJaA9DCM4AF2RLeHNAlIaUUpRoFU0PAWgWR0C0fku5OJtSdX2UKGgGaAloD0MIGjT0T3DSckCUhpRSlGgVTQ8BaBZHQLR+ZBFNL151fZQoaAZoCWgPQwjOGVHamx1yQJSGlFKUaBVL4WgWR0C0fmaCL/CJdX2UKGgGaAloD0MIOIWVCirmcUCUhpRSlGgVTQABaBZHQLR+nAKv3al1fZQoaAZoCWgPQwjzkCkfwqdwQJSGlFKUaBVL4WgWR0C0fqtRBNVSdX2UKGgGaAloD0MIECBDx84rcECUhpRSlGgVS7VoFkdAtH7qDEm6XnV9lChoBmgJaA9DCMVwdQDEhHJAlIaUUpRoFU0QAWgWR0C0fwqur6tUdX2UKGgGaAloD0MIQQ5KmGlobECUhpRSlGgVTTUBaBZHQLR/MpXIU8F1fZQoaAZoCWgPQwjKcDyfQRFwQJSGlFKUaBVNJAFoFkdAtH84n+hoNHV9lChoBmgJaA9DCLJmZJA7dHBAlIaUUpRoFUvBaBZHQLR/U5/LDAJ1fZQoaAZoCWgPQwhBguLHGHRxQJSGlFKUaBVL62gWR0C0f26fjCHidX2UKGgGaAloD0MIvjCZKtglcUCUhpRSlGgVS/ZoFkdAtH+Rp1zQu3V9lChoBmgJaA9DCPJdSl2yIHBAlIaUUpRoFUvVaBZHQLR/pUO/cnF1fZQoaAZoCWgPQwiKVYMwN0lxQJSGlFKUaBVNjgFoFkdAtH+ueUY8+3V9lChoBmgJaA9DCIY8ghup9nBAlIaUUpRoFU0eAWgWR0C0f678rI5pdX2UKGgGaAloD0MIAb9GkiC0NUCUhpRSlGgVS6NoFkdAtH/l2gWadHV9lChoBmgJaA9DCCntDb4weG1AlIaUUpRoFUvlaBZHQLR/6F9roGJ1fZQoaAZoCWgPQwh2/u2yH5NxQJSGlFKUaBVL62gWR0C0gBa3qiXZdX2UKGgGaAloD0MIOxvyz8w3ckCUhpRSlGgVS+FoFkdAtIAY9Pk7wXV9lChoBmgJaA9DCAUVVb/SUHFAlIaUUpRoFUv2aBZHQLSAdBPbfxd1fZQoaAZoCWgPQwhYqDXNO2xyQJSGlFKUaBVLwWgWR0C0gIPCyhSMdX2UKGgGaAloD0MI6rDCLR8NTkCUhpRSlGgVTegDaBZHQLSAiR28qWl1fZQoaAZoCWgPQwhd4PJYcz9zQJSGlFKUaBVL/2gWR0C0gJxBzFMqdX2UKGgGaAloD0MI5ULlX0vEbkCUhpRSlGgVS+VoFkdAtICp+OOsDHV9lChoBmgJaA9DCLzLRXyn1nFAlIaUUpRoFU0BAWgWR0C0gOwYxcmjdX2UKGgGaAloD0MIBK+WO3MPcECUhpRSlGgVTRsBaBZHQLSA/6/qPfd1fZQoaAZoCWgPQwj3Hi457l1xQJSGlFKUaBVNMQFoFkdAtIE17x/d7HV9lChoBmgJaA9DCBA+lGhJx21AlIaUUpRoFUvJaBZHQLSBSEXLvCx1fZQoaAZoCWgPQwhkXdxGgw1uQJSGlFKUaBVL82gWR0C0gU2pVCHAdX2UKGgGaAloD0MIR3L5D2llcUCUhpRSlGgVS7toFkdAtIFk6PsAvXVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 210,
79
  "n_steps": 2048,
80
  "gamma": 0.99,
81
  "gae_lambda": 0.95,
 
42
  "_np_random": null
43
  },
44
  "n_envs": 24,
45
+ "num_timesteps": 2015232,
46
+ "_total_timesteps": 2000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1651692422.5956533,
51
+ "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
54
  ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAKBuKz6Hv1k/rbvBPhkjQ7+acrE+ZSJ9PgAAAAAAAAAAZsdWvYXzxrmuShI+lUZDsYktljsaZbmyAACAPwAAgD/aprm9XP5/vAYpQj587Ni8MNm4vW0qTr4AAIA/AAAAADOmyD04C4E/YvGNPlppQr/7y1I+0BNRPgAAAAAAAAAADYeIvSmgT7osejw8CZuKs2j6sTtE8CkzAACAPwAAgD/AmcU9FF+IO1AmYL5ez6q+1G2CvfdHDb0AAIA/AAAAADMpML2t/4o/EJ0VvlsSV79QdrO96wPEvQAAAAAAAAAAQEq2PfSkCD+5ATQ9bbghvxFiKD6emKC9AAAAAAAAAAAArE+8wO2zP92W5L3AKRK+umvYu17Ukb0AAAAAAAAAACa+Mj40KCw/2qTbPeFeH7/Hb7I+5r3puwAAAAAAAAAAJm/zPbjPl7sQdQ2+CaJmvkIlWrzQWs0+AACAPwAAgD9mKIg9yDKjPwr7iz5n6g6/f/DPPcxBpj0AAAAAAAAAAM0O+T1Ey3U/vgMqPrMiP7/9PWM+tJA2PgAAAAAAAAAA2nbAvRwsEbwvCAY+pkuAPbzYybyaZzk8AACAPwAAAABmpyW94/W7P3n+k75OzhU9xw1avNpq1r0AAAAAAAAAAM3EcLx7/oa6FNZDt6YoL7LKZps5aItkNgAAgD8AAIA/Db/QvfU1kT81Awq/1+Jpv0SH/L2uKLO+AAAAAAAAAABN3KI9A/a/P9BikT7UeE6+VVSAPS4doj0AAAAAAAAAADODk7uz0bQ/bXjpvmVjnT1rJ6s7tYnTPQAAAAAAAAAAc2gZPrbkPbzF2bC6yRXcO6jEnr0hpou8AACAPwAAgD+rlI++ONQ5P5CFBT20zQu/h/HXvjSfRj4AAAAAAAAAABO6Qr7u1YI/p6bHvo67E78Uc86+PjV1vgAAAAAAAAAAgJ3VvfF6ejwxdkU+oi1kvmHjDD3OcRe9AAAAAAAAAADNYiw8rrGDuhj+ybZkCdGxtYlZO7Py6zUAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLGEsIhpSMAUOUdJRSlC4="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWViwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpQu"
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINUHUfUD7cECUhpRSlIwBbJRLpowBdJRHQMAqoL5qM3t1fZQoaAZoCWgPQwjw3eaNUy5yQJSGlFKUaBVLu2gWR0DAKqSgh8pkdX2UKGgGaAloD0MIokYhyezGcUCUhpRSlGgVS8FoFkdAwCqoJAMUh3V9lChoBmgJaA9DCCi6LvzgmnFAlIaUUpRoFUuMaBZHQMAqrRp+MIh1fZQoaAZoCWgPQwhbfXVVoLFxQJSGlFKUaBVL02gWR0DAKrHP9kz5dX2UKGgGaAloD0MIRtPZyaCYc0CUhpRSlGgVS+BoFkdAwCrEPluFYnV9lChoBmgJaA9DCF1OCYiJknJAlIaUUpRoFUvBaBZHQMAqw9f1Hvt1fZQoaAZoCWgPQwiki00rBWRwQJSGlFKUaBVLrGgWR0DAKslGZuyedX2UKGgGaAloD0MIPGh23dtRcUCUhpRSlGgVS4xoFkdAwCrJ0xubZ3V9lChoBmgJaA9DCGkCRSwinnNAlIaUUpRoFUu3aBZHQMAqy4qG1x91fZQoaAZoCWgPQwj4GKw41fpyQJSGlFKUaBVLt2gWR0DAKs0faHsUdX2UKGgGaAloD0MIIqev56u0cUCUhpRSlGgVS6VoFkdAwCrggh8pkXV9lChoBmgJaA9DCLcpHhcVFHFAlIaUUpRoFUuPaBZHQMAq5xYRuj11fZQoaAZoCWgPQwgi/Iug8TxyQJSGlFKUaBVLs2gWR0DAKujdDYywdX2UKGgGaAloD0MIwJKrWHy9c0CUhpRSlGgVTQgBaBZHQMAq8imMwUR1fZQoaAZoCWgPQwhuFcRAF1FyQJSGlFKUaBVL5mgWR0DAKweDg62fdX2UKGgGaAloD0MIgLVq10QYcECUhpRSlGgVS5toFkdAwCsKGfwqiHV9lChoBmgJaA9DCHkkXp5O+3BAlIaUUpRoFUuIaBZHQMArCzxoZht1fZQoaAZoCWgPQwgQ6Eza1MpwQJSGlFKUaBVLkmgWR0DAKxKJIlMRdX2UKGgGaAloD0MIuFZ72EvacUCUhpRSlGgVS8toFkdAwCsTx0+1SnV9lChoBmgJaA9DCAzmr5D5inBAlIaUUpRoFUutaBZHQMArFh7eEZl1fZQoaAZoCWgPQwjKGYo73stwQJSGlFKUaBVLs2gWR0DAKyAdjoZAdX2UKGgGaAloD0MIzehHw+n5cUCUhpRSlGgVS5BoFkdAwCsjQKKHf3V9lChoBmgJaA9DCCkGSDQBTm5AlIaUUpRoFUubaBZHQMArKKRdQfp1fZQoaAZoCWgPQwip9X6jnWxyQJSGlFKUaBVLqWgWR0DAKywUFjd6dX2UKGgGaAloD0MIK08g7BSlb0CUhpRSlGgVS5VoFkdAwCtDHktEonV9lChoBmgJaA9DCPAzLhzIMXJAlIaUUpRoFUvGaBZHQMArRaKcd5p1fZQoaAZoCWgPQwj+0w0UeAxxQJSGlFKUaBVLyGgWR0DAK0pwKjSHdX2UKGgGaAloD0MIrOY5Ih/VcUCUhpRSlGgVS7toFkdAwCtRTYukDnV9lChoBmgJaA9DCPSG+8gtYm9AlIaUUpRoFUuNaBZHQMArWXpGFzx1fZQoaAZoCWgPQwgmpgux+kxxQJSGlFKUaBVLuGgWR0DAK2Dv/io9dX2UKGgGaAloD0MIbApkdlZPckCUhpRSlGgVS9RoFkdAwCtiDbrTpnV9lChoBmgJaA9DCPAxWHGqa3FAlIaUUpRoFUuuaBZHQMArYeJpFkR1fZQoaAZoCWgPQwi5pdWQeDByQJSGlFKUaBVLsmgWR0DAK2H2Xb/PdX2UKGgGaAloD0MIrBkZ5O6NcECUhpRSlGgVS8hoFkdAwCt1dsSCe3V9lChoBmgJaA9DCGAA4UOJyG9AlIaUUpRoFUumaBZHQMArdnfVI7N1fZQoaAZoCWgPQwhJLv8hPaFxQJSGlFKUaBVLs2gWR0DAK39iDujRdX2UKGgGaAloD0MIW3ufqkKKc0CUhpRSlGgVS9xoFkdAwCuD5WRzR3V9lChoBmgJaA9DCKfLYmIzDXBAlIaUUpRoFUuxaBZHQMAriG0NSZV1fZQoaAZoCWgPQwjoLR7eMz5zQJSGlFKUaBVLomgWR0DAK5S++M6zdX2UKGgGaAloD0MI0o2wqMiwckCUhpRSlGgVS65oFkdAwCuexASnL3V9lChoBmgJaA9DCHWRQll46XFAlIaUUpRoFUupaBZHQMArouAiFCd1fZQoaAZoCWgPQwjPhCaJ5f1yQJSGlFKUaBVLvWgWR0DAK7LR+jM3dX2UKGgGaAloD0MIxY1bzM9FcECUhpRSlGgVS6BoFkdAwCuz3i704HV9lChoBmgJaA9DCAPOUrKcQXNAlIaUUpRoFUvAaBZHQMAruDyOJch1fZQoaAZoCWgPQwgQ5nYvd6ZyQJSGlFKUaBVLuGgWR0DAK79Ey+HrdX2UKGgGaAloD0MIIJxPHauwcUCUhpRSlGgVS8doFkdAwCvIhL5AQnV9lChoBmgJaA9DCENWt3pOxHJAlIaUUpRoFUviaBZHQMAryGyX2M91fZQoaAZoCWgPQwhE393K0jZwQJSGlFKUaBVLrmgWR0DAK9ba4+bFdX2UKGgGaAloD0MIp3Sw/g/YcUCUhpRSlGgVS9RoFkdAwCvb4bjtHHV9lChoBmgJaA9DCAosgCnDBHBAlIaUUpRoFUu8aBZHQMAr5HmaH9F1fZQoaAZoCWgPQwjEzhQ6LxxwQJSGlFKUaBVLoWgWR0DAK+lUKiPAdX2UKGgGaAloD0MIUYcVbjm+cECUhpRSlGgVS6NoFkdAwCvp/5LytnV9lChoBmgJaA9DCHnMQGX8M3BAlIaUUpRoFUu4aBZHQMAr9BmoR7J1fZQoaAZoCWgPQwjD8BEx5exwQJSGlFKUaBVLmGgWR0DAK/VSydFwdX2UKGgGaAloD0MIKlQ3F/8vcUCUhpRSlGgVS7FoFkdAwCv2H9m6G3V9lChoBmgJaA9DCNTX8zULVXBAlIaUUpRoFUuKaBZHQMAr+Chew9t1fZQoaAZoCWgPQwg/br98Mn9xQJSGlFKUaBVLu2gWR0DAK/4RGtp3dX2UKGgGaAloD0MIDTm2nmEgcUCUhpRSlGgVS6xoFkdAwCwGM/hVEXV9lChoBmgJaA9DCIQtdvvsvnJAlIaUUpRoFUviaBZHQMAsCAoXsPd1fZQoaAZoCWgPQwgNAFXceOtyQJSGlFKUaBVL4WgWR0DALA1znzQNdX2UKGgGaAloD0MILCgMyvTZcECUhpRSlGgVS5toFkdAwCwjiBGx2XV9lChoBmgJaA9DCNO84xTd2nJAlIaUUpRoFUvGaBZHQMAsJX7Lt/p1fZQoaAZoCWgPQwheg770tqlxQJSGlFKUaBVLsmgWR0DALDMygwoLdX2UKGgGaAloD0MINUHUfYClckCUhpRSlGgVS8toFkdAwCwzMxoIwHV9lChoBmgJaA9DCIQPJVryTHNAlIaUUpRoFUvUaBZHQMAsRvi1iON1fZQoaAZoCWgPQwhXtDnOLSpxQJSGlFKUaBVLsWgWR0DALFLfYSQHdX2UKGgGaAloD0MIAkaXN4f4cECUhpRSlGgVS6poFkdAwCxXGyX2NHV9lChoBmgJaA9DCHWxaaUQZ3FAlIaUUpRoFUuWaBZHQMAsWpRoAXF1fZQoaAZoCWgPQwjY8PRK2fZxQJSGlFKUaBVLy2gWR0DALF46hg3MdX2UKGgGaAloD0MI/5Hp0OkTb0CUhpRSlGgVS5xoFkdAwCxo1cdHUnV9lChoBmgJaA9DCIRFRZwO/3BAlIaUUpRoFUuYaBZHQMAsaxBmf5F1fZQoaAZoCWgPQwj12JYBp3RyQJSGlFKUaBVLzWgWR0DALHUhNdqtdX2UKGgGaAloD0MI2QdZFgzgc0CUhpRSlGgVS+doFkdAwCx2+otL+XV9lChoBmgJaA9DCO8gdqaQWnNAlIaUUpRoFUviaBZHQMAsdwHRkVh1fZQoaAZoCWgPQwh01NFx9XtyQJSGlFKUaBVLm2gWR0DALHlGViWndX2UKGgGaAloD0MIKJ1IMJXzcECUhpRSlGgVS9JoFkdAwCyGxIre7HV9lChoBmgJaA9DCPD3i9kSOXJAlIaUUpRoFUuvaBZHQMAsh4mCyyF1fZQoaAZoCWgPQwhFm+PcZmlxQJSGlFKUaBVLvGgWR0DALIddonKGdX2UKGgGaAloD0MIVYmyt1QhckCUhpRSlGgVS7toFkdAwCySjJMg2nV9lChoBmgJaA9DCGGKcmn8qHFAlIaUUpRoFUugaBZHQMAslFsxfv51fZQoaAZoCWgPQwg6H54lyDtxQJSGlFKUaBVLtmgWR0DALJZ95QgtdX2UKGgGaAloD0MIZr6Dnzi5ckCUhpRSlGgVS8RoFkdAwCycKvV3EHV9lChoBmgJaA9DCGnEzD4P1G9AlIaUUpRoFUu2aBZHQMAsoSjpLVZ1fZQoaAZoCWgPQwjgEoB/imFyQJSGlFKUaBVLvGgWR0DALKRMDfWMdX2UKGgGaAloD0MIKUF/oce3ckCUhpRSlGgVS55oFkdAwCypqesgdXV9lChoBmgJaA9DCNeGinH+1nFAlIaUUpRoFUvGaBZHQMAs2FK02Lp1fZQoaAZoCWgPQwgoSddMfm9wQJSGlFKUaBVLqmgWR0DALOTVtoBadX2UKGgGaAloD0MII0xRLg22cECUhpRSlGgVS7NoFkdAwCzpT2nKn3V9lChoBmgJaA9DCDuKc9RRbW9AlIaUUpRoFUuTaBZHQMAs8gdOqNp1fZQoaAZoCWgPQwi4y37d6Z1wQJSGlFKUaBVLuWgWR0DALPaTOgQIdX2UKGgGaAloD0MIX3r7c9FKSUCUhpRSlGgVS1poFkdAwCz4j7ALzHV9lChoBmgJaA9DCKYPXVDfukdAlIaUUpRoFUtqaBZHQMAs/R2B8QZ1fZQoaAZoCWgPQwiO5V31QDVwQJSGlFKUaBVLnGgWR0DALPzjR2KVdX2UKGgGaAloD0MIrmad8b0+c0CUhpRSlGgVS9doFkdAwCz+Oqebu3V9lChoBmgJaA9DCMZOeAlOz3NAlIaUUpRoFUvwaBZHQMAs/6hHskZ1fZQoaAZoCWgPQwghOgSOBGVxQJSGlFKUaBVLt2gWR0DALQVHe7+UdX2UKGgGaAloD0MIH/MBgQ4TckCUhpRSlGgVS69oFkdAwC0IhGH58HV9lChoBmgJaA9DCP5HpkOnUG5AlIaUUpRoFUubaBZHQMAtCynLq2V1fZQoaAZoCWgPQwgQJVryOKJzQJSGlFKUaBVL1mgWR0DALRJUWEbpdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 410,
79
  "n_steps": 2048,
80
  "gamma": 0.99,
81
  "gae_lambda": 0.95,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:50ef5d50208b96b55c600e72be3d024bbbed40681824c30aa67ba7ac51058d72
3
  size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92fe90202f0c7838febaaf2cb67adb5caf19a0f5144aa0e99556cc9c74e40f56
3
  size 84893
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:15d6c9f53281b3936cea5861f848989df1f6d339e42bbffa6ef961545d516b29
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b6954707f321ee25e74780138685a03035be9e120b71d2e954fbc97dcae23bb
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2e6d415b3565ebcf61e19d7fe6abd55501b305ca6874bb66c3a1976904ee30c8
3
- size 210566
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f8f4ed63d4f65b5dc47e03b8d4f2361c3ad00c2d91ec86c53bf6fa06cefd89b
3
+ size 210688
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 240.14826784568513, "std_reward": 41.00576120399014, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T19:24:56.709797"}
 
1
+ {"mean_reward": 284.88653390152524, "std_reward": 20.101961534100898, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T20:09:24.353286"}