--- pipeline_tag: token-classification tags: - named-entity-recognition - sequence-tagger-model widget: - text: "George Washington ging naar Washington" inference: parameters: aggregation_strategy: "simple" language: - nl --- Same model as [flair/ner-dutch-large](https://huggingface.co/flair/ner-dutch-large) but transformed back to pure huggingface pytorch for performance purposes ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("EvanD/dutch-ner-xlm-conll2003") ner_model = AutoModelForTokenClassification.from_pretrained("EvanD/dutch-ner-xlm-conll2003") nlp = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple") example = "George Washington ging naar Washington" ner_results = nlp(example) print(ner_results) # { # "start_pos": 0, # "end_pos": 17, # "text": "George Washington", # "score": 0.9999986886978149, # "label": "PER" # } # { # "start_pos": 28, # "end_pos": 38, # "text": "Washington", # "score": 0.9999939203262329, # "label": "LOC" # } ```