--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - audio-classification - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-wakeword results: [] --- # wav2vec2-base-wakeword This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 4.0217 - Accuracy: 0.7473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 7.269 | 0.9832 | 44 | 6.9029 | 0.5275 | | 6.1201 | 1.9888 | 89 | 5.6800 | 0.5573 | | 4.9094 | 2.9944 | 134 | 4.6621 | 0.6797 | | 4.2402 | 4.0 | 179 | 4.0217 | 0.7473 | | 3.8857 | 4.9162 | 220 | 3.8197 | 0.7174 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1