--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - audio-classification - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-wakeword results: [] --- # wav2vec2-base-wakeword This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 6.0557 - Accuracy: 0.6140 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 512 - eval_batch_size: 32 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 6.2039 | 0.0 | | No log | 2.0 | 2 | 6.1510 | 0.0175 | | No log | 3.0 | 3 | 6.0954 | 0.4386 | | No log | 4.0 | 4 | 6.0688 | 0.5789 | | No log | 5.0 | 5 | 6.0557 | 0.6140 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1