File size: 4,792 Bytes
36a94a8
563ef70
1575c76
563ef70
 
 
 
 
 
 
 
 
 
a75619f
1575c76
563ef70
 
 
 
 
 
 
1575c76
 
 
36a94a8
 
563ef70
 
36a94a8
563ef70
36a94a8
563ef70
 
1575c76
 
36a94a8
563ef70
36a94a8
563ef70
36a94a8
563ef70
36a94a8
563ef70
36a94a8
563ef70
36a94a8
563ef70
36a94a8
563ef70
36a94a8
563ef70
36a94a8
563ef70
 
7b9ebc4
563ef70
 
 
 
1575c76
 
563ef70
36a94a8
563ef70
36a94a8
7b9ebc4
 
1575c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36a94a8
 
563ef70
36a94a8
1575c76
 
563ef70
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
datasets:
- xtreme_s
metrics:
- wer
model-index:
- name: wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod9
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: xtreme_s
      type: xtreme_s
      config: fleurs.id_id
      split: test
      args: fleurs.id_id
    metrics:
    - name: Wer
      type: wer
      value: 0.8831761712318515
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod9

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the xtreme_s dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6655
- Wer: 0.8832

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 9.2247        | 1.0   | 39   | 3.1705          | 1.0    |
| 2.9516        | 2.0   | 78   | 2.8732          | 1.0    |
| 2.8953        | 3.0   | 117  | 2.8663          | 1.0    |
| 2.8878        | 4.0   | 156  | 2.8693          | 1.0    |
| 2.8818        | 5.0   | 195  | 2.8656          | 1.0    |
| 2.8814        | 6.0   | 234  | 2.8478          | 1.0    |
| 2.8817        | 7.0   | 273  | 2.8603          | 1.0    |
| 2.8771        | 8.0   | 312  | 2.8647          | 1.0    |
| 2.8811        | 9.0   | 351  | 2.8630          | 1.0    |
| 2.8703        | 10.0  | 390  | 2.8667          | 1.0    |
| 2.8608        | 11.0  | 429  | 2.8429          | 1.0    |
| 2.8578        | 12.0  | 468  | 2.8399          | 1.0    |
| 2.856         | 13.0  | 507  | 2.8531          | 1.0    |
| 2.8438        | 14.0  | 546  | 2.7872          | 1.0    |
| 2.7833        | 15.0  | 585  | 2.7015          | 1.0    |
| 2.7126        | 16.0  | 624  | 2.5606          | 1.0    |
| 2.4797        | 17.0  | 663  | 2.2529          | 1.0    |
| 2.2495        | 18.0  | 702  | 2.1600          | 1.0    |
| 1.8737        | 19.0  | 741  | 1.6194          | 1.0    |
| 1.69          | 20.0  | 780  | 1.4995          | 0.9999 |
| 1.5018        | 21.0  | 819  | 1.3398          | 0.9834 |
| 1.3264        | 22.0  | 858  | 1.2688          | 0.9692 |
| 1.1944        | 23.0  | 897  | 1.2211          | 0.9585 |
| 1.1186        | 24.0  | 936  | 1.1754          | 0.9517 |
| 1.0038        | 25.0  | 975  | 1.2082          | 0.9758 |
| 0.9096        | 26.0  | 1014 | 1.1463          | 0.9210 |
| 0.7954        | 27.0  | 1053 | 1.1530          | 0.9184 |
| 0.7337        | 28.0  | 1092 | 1.1948          | 0.9208 |
| 0.6438        | 29.0  | 1131 | 1.1907          | 0.9021 |
| 0.5933        | 30.0  | 1170 | 1.1994          | 0.9032 |
| 0.5646        | 31.0  | 1209 | 1.2765          | 0.9019 |
| 0.5314        | 32.0  | 1248 | 1.3331          | 0.9387 |
| 0.4208        | 33.0  | 1287 | 1.4003          | 0.9271 |
| 0.3769        | 34.0  | 1326 | 1.4226          | 0.9635 |
| 0.425         | 35.0  | 1365 | 1.3948          | 0.8890 |
| 0.3446        | 36.0  | 1404 | 1.4492          | 0.8901 |
| 0.3411        | 37.0  | 1443 | 1.5271          | 0.9136 |
| 0.3147        | 38.0  | 1482 | 1.4801          | 0.9139 |
| 0.2843        | 39.0  | 1521 | 1.5223          | 0.9011 |
| 0.2908        | 40.0  | 1560 | 1.6087          | 0.8871 |
| 0.2816        | 41.0  | 1599 | 1.5167          | 0.9097 |
| 0.2586        | 42.0  | 1638 | 1.5968          | 0.9129 |
| 0.2428        | 43.0  | 1677 | 1.6335          | 0.9100 |
| 0.2569        | 44.0  | 1716 | 1.5888          | 0.8967 |
| 0.2119        | 45.0  | 1755 | 1.6366          | 0.8910 |
| 0.2496        | 46.0  | 1794 | 1.6392          | 0.8807 |
| 0.2246        | 47.0  | 1833 | 1.6780          | 0.9197 |
| 0.2231        | 48.0  | 1872 | 1.7074          | 0.8969 |
| 0.2083        | 49.0  | 1911 | 1.6566          | 0.8811 |
| 0.2091        | 50.0  | 1950 | 1.6655          | 0.8832 |


### Framework versions

- Transformers 4.39.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2