File size: 2,495 Bytes
d3b4fc7 d0368a5 2511428 d0368a5 f3bb242 2511428 d0368a5 2511428 d3b4fc7 d0368a5 d3b4fc7 d0368a5 d3b4fc7 d0368a5 2511428 d3b4fc7 d0368a5 d3b4fc7 d0368a5 d3b4fc7 d0368a5 d3b4fc7 d0368a5 d3b4fc7 d0368a5 d3b4fc7 d0368a5 d3b4fc7 d0368a5 d3b4fc7 d0368a5 d3b4fc7 d0368a5 2511428 d0368a5 d3b4fc7 d0368a5 d3b4fc7 d0368a5 2511428 d3b4fc7 d0368a5 d3b4fc7 2511428 d0368a5 2511428 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod14
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_13_0
type: common_voice_13_0
config: id
split: test
args: id
metrics:
- name: Wer
type: wer
value: 0.32789454277286134
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod14
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3505
- Wer: 0.3279
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.9451 | 1.0 | 278 | 2.9182 | 1.0 |
| 2.87 | 2.0 | 556 | 2.7116 | 1.0 |
| 1.1102 | 3.0 | 834 | 0.6030 | 0.5907 |
| 0.6952 | 4.0 | 1112 | 0.4691 | 0.4755 |
| 0.5976 | 5.0 | 1390 | 0.4316 | 0.4263 |
| 0.4842 | 6.0 | 1668 | 0.3887 | 0.3842 |
| 0.4444 | 7.0 | 1946 | 0.3722 | 0.3670 |
| 0.4221 | 8.0 | 2224 | 0.3721 | 0.3538 |
| 0.3929 | 9.0 | 2502 | 0.3527 | 0.3463 |
| 0.3611 | 10.0 | 2780 | 0.3538 | 0.3386 |
| 0.3669 | 11.0 | 3058 | 0.3513 | 0.3303 |
| 0.3517 | 12.0 | 3336 | 0.3505 | 0.3279 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1
|