|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings
|
|
""" Florence-2 configuration"""
|
|
|
|
from typing import Optional
|
|
|
|
from transformers import AutoConfig
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.utils import logging
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
class Florence2VisionConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel
|
|
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the Florence2VisionModel architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
|
The dropout rate of the drop path layer.
|
|
patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]):
|
|
The patch size of the image.
|
|
patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]):
|
|
The patch stride of the image.
|
|
patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]):
|
|
The patch padding of the image.
|
|
patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]):
|
|
Whether to apply layer normalization before the patch embedding layer.
|
|
enable_checkpoint (`bool`, *optional*, defaults to False):
|
|
Whether to enable checkpointing.
|
|
dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]):
|
|
The dimension of the embedding layer.
|
|
num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
|
|
The number of attention heads.
|
|
num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
|
|
The number of groups.
|
|
depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]):
|
|
The depth of the model.
|
|
window_size (`int`, *optional*, defaults to 12):
|
|
The window size of the model.
|
|
projection_dim (`int`, *optional*, defaults to 1024):
|
|
The dimension of the projection layer.
|
|
visual_temporal_embedding (`dict`, *optional*):
|
|
The configuration of the visual temporal embedding.
|
|
image_pos_embed (`dict`, *optional*):
|
|
The configuration of the image position embedding.
|
|
image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]):
|
|
The source of the image feature.
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import Florence2VisionConfig, Florence2VisionModel
|
|
|
|
>>> # Initializing a Florence2 Vision style configuration
|
|
>>> configuration = Florence2VisionConfig()
|
|
|
|
>>> # Initializing a model (with random weights)
|
|
>>> model = Florence2VisionModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "florence2_vision"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
drop_path_rate=0.1,
|
|
patch_size=[7, 3, 3, 3],
|
|
patch_stride=[4, 2, 2, 2],
|
|
patch_padding=[3, 1, 1, 1],
|
|
patch_prenorm=[False, True, True, True],
|
|
enable_checkpoint=False,
|
|
dim_embed=[256, 512, 1024, 2048],
|
|
num_heads=[8, 16, 32, 64],
|
|
num_groups=[8, 16, 32, 64],
|
|
depths=[1, 1, 9, 1],
|
|
window_size=12,
|
|
projection_dim=1024,
|
|
visual_temporal_embedding=None,
|
|
image_pos_embed=None,
|
|
image_feature_source=["spatial_avg_pool", "temporal_avg_pool"],
|
|
**kwargs,
|
|
):
|
|
self.drop_path_rate = drop_path_rate
|
|
self.patch_size = patch_size
|
|
self.patch_stride = patch_stride
|
|
self.patch_padding = patch_padding
|
|
self.patch_prenorm = patch_prenorm
|
|
self.enable_checkpoint = enable_checkpoint
|
|
self.dim_embed = dim_embed
|
|
self.num_heads = num_heads
|
|
self.num_groups = num_groups
|
|
self.depths = depths
|
|
self.window_size = window_size
|
|
self.projection_dim = projection_dim
|
|
self.visual_temporal_embedding = visual_temporal_embedding
|
|
self.image_pos_embed = image_pos_embed
|
|
self.image_feature_source = image_feature_source
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
class Florence2LanguageConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the BART
|
|
[facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 51289):
|
|
Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`Florence2LanguageModel`].
|
|
d_model (`int`, *optional*, defaults to 1024):
|
|
Dimensionality of the layers and the pooler layer.
|
|
encoder_layers (`int`, *optional*, defaults to 12):
|
|
Number of encoder layers.
|
|
decoder_layers (`int`, *optional*, defaults to 12):
|
|
Number of decoder layers.
|
|
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
|
Number of attention heads for each attention layer in the Transformer decoder.
|
|
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
|
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
|
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
|
dropout (`float`, *optional*, defaults to 0.1):
|
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
activation_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for activations inside the fully connected layer.
|
|
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for classifier.
|
|
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
|
just in case (e.g., 512 or 1024 or 2048).
|
|
init_std (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
|
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
|
for more details.
|
|
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
|
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
|
for more details.
|
|
scale_embedding (`bool`, *optional*, defaults to `False`):
|
|
Scale embeddings by diving by sqrt(d_model).
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
|
num_labels (`int`, *optional*, defaults to 3):
|
|
The number of labels to use in [`Florence2LanguageForSequenceClassification`].
|
|
forced_eos_token_id (`int`, *optional*, defaults to 2):
|
|
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
|
`eos_token_id`.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import Florence2LanguageConfig, Florence2LanguageModel
|
|
|
|
>>> # Initializing a Florence2 Language style configuration
|
|
>>> configuration = Florence2LanguageConfig()
|
|
|
|
>>> # Initializing a model (with random weights)
|
|
>>> model = Florence2LangaugeModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "florence2_language"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=51289,
|
|
max_position_embeddings=1024,
|
|
encoder_layers=12,
|
|
encoder_ffn_dim=4096,
|
|
encoder_attention_heads=16,
|
|
decoder_layers=12,
|
|
decoder_ffn_dim=4096,
|
|
decoder_attention_heads=16,
|
|
encoder_layerdrop=0.0,
|
|
decoder_layerdrop=0.0,
|
|
activation_function="gelu",
|
|
d_model=1024,
|
|
dropout=0.1,
|
|
attention_dropout=0.0,
|
|
activation_dropout=0.0,
|
|
init_std=0.02,
|
|
classifier_dropout=0.0,
|
|
scale_embedding=False,
|
|
use_cache=True,
|
|
num_labels=3,
|
|
pad_token_id=1,
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
is_encoder_decoder=True,
|
|
decoder_start_token_id=2,
|
|
forced_eos_token_id=2,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.d_model = d_model
|
|
self.encoder_ffn_dim = encoder_ffn_dim
|
|
self.encoder_layers = encoder_layers
|
|
self.encoder_attention_heads = encoder_attention_heads
|
|
self.decoder_ffn_dim = decoder_ffn_dim
|
|
self.decoder_layers = decoder_layers
|
|
self.decoder_attention_heads = decoder_attention_heads
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.activation_dropout = activation_dropout
|
|
self.activation_function = activation_function
|
|
self.init_std = init_std
|
|
self.encoder_layerdrop = encoder_layerdrop
|
|
self.decoder_layerdrop = decoder_layerdrop
|
|
self.classifier_dropout = classifier_dropout
|
|
self.use_cache = use_cache
|
|
self.num_hidden_layers = encoder_layers
|
|
self.scale_embedding = scale_embedding
|
|
|
|
super().__init__(
|
|
num_labels=num_labels,
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
is_encoder_decoder=is_encoder_decoder,
|
|
decoder_start_token_id=decoder_start_token_id,
|
|
forced_eos_token_id=forced_eos_token_id,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
|
|
self.forced_bos_token_id = self.bos_token_id
|
|
warnings.warn(
|
|
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
|
|
"The config can simply be saved and uploaded again to be fixed."
|
|
)
|
|
|
|
class Florence2Config(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an
|
|
Florence-2 model according to the specified arguments, defining the model architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
vision_config (`Florence2VisionConfig`, *optional*):
|
|
Custom vision config or dict
|
|
text_config (`Union[AutoConfig, dict]`, *optional*):
|
|
The config object of the text backbone.
|
|
ignore_index (`int`, *optional*, defaults to -100):
|
|
The ignore index for the loss function.
|
|
vocab_size (`int`, *optional*, defaults to 51289):
|
|
Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`]
|
|
projection_dim (`int`, *optional*, defaults to 1024):
|
|
Dimension of the multimodal projection space.
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig
|
|
|
|
>>> # Initializing a clip-like vision config
|
|
>>> vision_config = CLIPVisionConfig()
|
|
|
|
>>> # Initializing a Bart config
|
|
>>> text_config = BartConfig()
|
|
|
|
>>> # Initializing a Florence-2 configuration
|
|
>>> configuration = Florence2Config(vision_config, text_config)
|
|
|
|
>>> # Initializing a model from the florence-2 configuration
|
|
>>> model = Florence2ForConditionalGeneration(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "florence2"
|
|
is_composition = False
|
|
|
|
def __init__(
|
|
self,
|
|
vision_config=None,
|
|
text_config=None,
|
|
ignore_index=-100,
|
|
vocab_size=51289,
|
|
projection_dim=1024,
|
|
**kwargs,
|
|
):
|
|
self.ignore_index = ignore_index
|
|
self.vocab_size = vocab_size
|
|
self.projection_dim = projection_dim
|
|
if vision_config is not None:
|
|
vision_config = PretrainedConfig(**vision_config)
|
|
self.vision_config = vision_config
|
|
self.vocab_size = self.vocab_size
|
|
|
|
self.text_config = text_config
|
|
if text_config is not None:
|
|
self.text_config = Florence2LanguageConfig(**text_config)
|
|
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
|