File size: 11,628 Bytes
ff19902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
{
  "best_metric": 0.7404754757881165,
  "best_model_checkpoint": "./twitter-xlmr-clip-finetuned-all-123/checkpoint-11500",
  "epoch": 1.3828763828763828,
  "eval_steps": 500,
  "global_step": 11500,
  "is_hyper_param_search": false,
  "is_local_process_zero": true,
  "is_world_process_zero": true,
  "log_history": [
    {
      "epoch": 0.06,
      "grad_norm": 13.600483894348145,
      "learning_rate": 4.994047619047619e-05,
      "loss": 0.6444,
      "step": 500
    },
    {
      "epoch": 0.06,
      "eval_f1": 0.41968345507991583,
      "eval_loss": 0.8771085143089294,
      "eval_precision": 0.6905442329947281,
      "eval_recall": 0.4537466834241028,
      "eval_runtime": 9.714,
      "eval_samples_per_second": 90.385,
      "eval_steps_per_second": 5.662,
      "step": 500
    },
    {
      "epoch": 0.12,
      "grad_norm": 3.1294376850128174,
      "learning_rate": 4.988035113035113e-05,
      "loss": 0.5499,
      "step": 1000
    },
    {
      "epoch": 0.12,
      "eval_f1": 0.41168390354058104,
      "eval_loss": 0.8166923522949219,
      "eval_precision": 0.7197164083396941,
      "eval_recall": 0.4260270911883815,
      "eval_runtime": 10.112,
      "eval_samples_per_second": 86.827,
      "eval_steps_per_second": 5.439,
      "step": 1000
    },
    {
      "epoch": 0.18,
      "grad_norm": 3.979219913482666,
      "learning_rate": 4.982022607022607e-05,
      "loss": 0.5357,
      "step": 1500
    },
    {
      "epoch": 0.18,
      "eval_f1": 0.44236857569210003,
      "eval_loss": 0.8084450364112854,
      "eval_precision": 0.7263357669536159,
      "eval_recall": 0.4695992179863147,
      "eval_runtime": 9.4795,
      "eval_samples_per_second": 92.621,
      "eval_steps_per_second": 5.802,
      "step": 1500
    },
    {
      "epoch": 0.24,
      "grad_norm": 4.673430442810059,
      "learning_rate": 4.9760341510341516e-05,
      "loss": 0.5175,
      "step": 2000
    },
    {
      "epoch": 0.24,
      "eval_f1": 0.37174117930428513,
      "eval_loss": 0.8703882098197937,
      "eval_precision": 0.6665612592670672,
      "eval_recall": 0.426614532420984,
      "eval_runtime": 10.0742,
      "eval_samples_per_second": 87.153,
      "eval_steps_per_second": 5.459,
      "step": 2000
    },
    {
      "epoch": 0.3,
      "grad_norm": 4.538591384887695,
      "learning_rate": 4.9700216450216456e-05,
      "loss": 0.5285,
      "step": 2500
    },
    {
      "epoch": 0.3,
      "eval_f1": 0.42208412407033724,
      "eval_loss": 0.906663179397583,
      "eval_precision": 0.7528800535330206,
      "eval_recall": 0.45646604291765575,
      "eval_runtime": 11.1647,
      "eval_samples_per_second": 78.641,
      "eval_steps_per_second": 4.926,
      "step": 2500
    },
    {
      "epoch": 0.36,
      "grad_norm": 3.0253360271453857,
      "learning_rate": 4.964009139009139e-05,
      "loss": 0.5081,
      "step": 3000
    },
    {
      "epoch": 0.36,
      "eval_f1": 0.6355885803741356,
      "eval_loss": 0.7414107322692871,
      "eval_precision": 0.7654892081053667,
      "eval_recall": 0.6113652655588139,
      "eval_runtime": 10.1707,
      "eval_samples_per_second": 86.326,
      "eval_steps_per_second": 5.408,
      "step": 3000
    },
    {
      "epoch": 0.42,
      "grad_norm": 7.686459541320801,
      "learning_rate": 4.957996632996633e-05,
      "loss": 0.506,
      "step": 3500
    },
    {
      "epoch": 0.42,
      "eval_f1": 0.5785601517423107,
      "eval_loss": 0.8712885975837708,
      "eval_precision": 0.5829865278619871,
      "eval_recall": 0.659145370758274,
      "eval_runtime": 9.4937,
      "eval_samples_per_second": 92.483,
      "eval_steps_per_second": 5.793,
      "step": 3500
    },
    {
      "epoch": 0.48,
      "grad_norm": 5.288177967071533,
      "learning_rate": 4.951984126984127e-05,
      "loss": 0.5049,
      "step": 4000
    },
    {
      "epoch": 0.48,
      "eval_f1": 0.4464146254881079,
      "eval_loss": 0.751436173915863,
      "eval_precision": 0.5550960735171261,
      "eval_recall": 0.4567546432062561,
      "eval_runtime": 10.1399,
      "eval_samples_per_second": 86.589,
      "eval_steps_per_second": 5.424,
      "step": 4000
    },
    {
      "epoch": 0.54,
      "grad_norm": 2.32623028755188,
      "learning_rate": 4.945971620971621e-05,
      "loss": 0.4999,
      "step": 4500
    },
    {
      "epoch": 0.54,
      "eval_f1": 0.5767450661581325,
      "eval_loss": 0.7584463357925415,
      "eval_precision": 0.6519354622940794,
      "eval_recall": 0.5502052785923753,
      "eval_runtime": 9.964,
      "eval_samples_per_second": 88.117,
      "eval_steps_per_second": 5.52,
      "step": 4500
    },
    {
      "epoch": 0.6,
      "grad_norm": 8.978556632995605,
      "learning_rate": 4.939959114959115e-05,
      "loss": 0.507,
      "step": 5000
    },
    {
      "epoch": 0.6,
      "eval_f1": 0.5635568884134308,
      "eval_loss": 0.8071982860565186,
      "eval_precision": 0.6478587943382395,
      "eval_recall": 0.5625815761299632,
      "eval_runtime": 9.922,
      "eval_samples_per_second": 88.49,
      "eval_steps_per_second": 5.543,
      "step": 5000
    },
    {
      "epoch": 0.66,
      "grad_norm": 5.773237228393555,
      "learning_rate": 4.933946608946609e-05,
      "loss": 0.5048,
      "step": 5500
    },
    {
      "epoch": 0.66,
      "eval_f1": 0.5730277716509274,
      "eval_loss": 0.8080196380615234,
      "eval_precision": 0.6259898141973613,
      "eval_recall": 0.5725429409300378,
      "eval_runtime": 10.1691,
      "eval_samples_per_second": 86.34,
      "eval_steps_per_second": 5.409,
      "step": 5500
    },
    {
      "epoch": 0.72,
      "grad_norm": 4.596500873565674,
      "learning_rate": 4.9279461279461284e-05,
      "loss": 0.4907,
      "step": 6000
    },
    {
      "epoch": 0.72,
      "eval_f1": 0.522356162116029,
      "eval_loss": 0.7966476082801819,
      "eval_precision": 0.6975785731883293,
      "eval_recall": 0.5138146441372248,
      "eval_runtime": 10.1124,
      "eval_samples_per_second": 86.824,
      "eval_steps_per_second": 5.439,
      "step": 6000
    },
    {
      "epoch": 0.78,
      "grad_norm": 4.815864562988281,
      "learning_rate": 4.9219336219336224e-05,
      "loss": 0.493,
      "step": 6500
    },
    {
      "epoch": 0.78,
      "eval_f1": 0.4921730387816156,
      "eval_loss": 0.8192508220672607,
      "eval_precision": 0.7098761086589401,
      "eval_recall": 0.4948889819857562,
      "eval_runtime": 10.12,
      "eval_samples_per_second": 86.759,
      "eval_steps_per_second": 5.435,
      "step": 6500
    },
    {
      "epoch": 0.84,
      "grad_norm": 2.7458622455596924,
      "learning_rate": 4.915921115921116e-05,
      "loss": 0.4668,
      "step": 7000
    },
    {
      "epoch": 0.84,
      "eval_f1": 0.6501053053856183,
      "eval_loss": 0.7501620650291443,
      "eval_precision": 0.6281644378579914,
      "eval_recall": 0.6941954103244425,
      "eval_runtime": 9.7011,
      "eval_samples_per_second": 90.505,
      "eval_steps_per_second": 5.669,
      "step": 7000
    },
    {
      "epoch": 0.9,
      "grad_norm": 6.319346904754639,
      "learning_rate": 4.90990860990861e-05,
      "loss": 0.4717,
      "step": 7500
    },
    {
      "epoch": 0.9,
      "eval_f1": 0.5190561121359437,
      "eval_loss": 0.7636385560035706,
      "eval_precision": 0.6372459240106298,
      "eval_recall": 0.5109072289717451,
      "eval_runtime": 9.9019,
      "eval_samples_per_second": 88.67,
      "eval_steps_per_second": 5.554,
      "step": 7500
    },
    {
      "epoch": 0.96,
      "grad_norm": 4.232970714569092,
      "learning_rate": 4.903896103896104e-05,
      "loss": 0.4774,
      "step": 8000
    },
    {
      "epoch": 0.96,
      "eval_f1": 0.5587125288791309,
      "eval_loss": 0.765232503414154,
      "eval_precision": 0.7513256527294695,
      "eval_recall": 0.5360405902341386,
      "eval_runtime": 10.3268,
      "eval_samples_per_second": 85.022,
      "eval_steps_per_second": 5.326,
      "step": 8000
    },
    {
      "epoch": 1.02,
      "grad_norm": 6.469419479370117,
      "learning_rate": 4.897883597883598e-05,
      "loss": 0.4676,
      "step": 8500
    },
    {
      "epoch": 1.02,
      "eval_f1": 0.5836074412050168,
      "eval_loss": 0.8481860756874084,
      "eval_precision": 0.6371603008082242,
      "eval_recall": 0.5918316808639389,
      "eval_runtime": 10.1025,
      "eval_samples_per_second": 86.909,
      "eval_steps_per_second": 5.444,
      "step": 8500
    },
    {
      "epoch": 1.08,
      "grad_norm": 6.76945161819458,
      "learning_rate": 4.891871091871092e-05,
      "loss": 0.4361,
      "step": 9000
    },
    {
      "epoch": 1.08,
      "eval_f1": 0.5175478304159831,
      "eval_loss": 0.7456216812133789,
      "eval_precision": 0.668652900688299,
      "eval_recall": 0.5176800260671229,
      "eval_runtime": 9.5682,
      "eval_samples_per_second": 91.762,
      "eval_steps_per_second": 5.748,
      "step": 9000
    },
    {
      "epoch": 1.14,
      "grad_norm": 11.62441349029541,
      "learning_rate": 4.885858585858586e-05,
      "loss": 0.4536,
      "step": 9500
    },
    {
      "epoch": 1.14,
      "eval_f1": 0.5155711517804843,
      "eval_loss": 0.8448612689971924,
      "eval_precision": 0.73633642018397,
      "eval_recall": 0.5160256947353722,
      "eval_runtime": 10.0725,
      "eval_samples_per_second": 87.168,
      "eval_steps_per_second": 5.46,
      "step": 9500
    },
    {
      "epoch": 1.2,
      "grad_norm": 6.764497756958008,
      "learning_rate": 4.879858104858105e-05,
      "loss": 0.4277,
      "step": 10000
    },
    {
      "epoch": 1.2,
      "eval_f1": 0.5173349712389866,
      "eval_loss": 0.8647661805152893,
      "eval_precision": 0.6381631231821719,
      "eval_recall": 0.5247414234511009,
      "eval_runtime": 10.0414,
      "eval_samples_per_second": 87.438,
      "eval_steps_per_second": 5.477,
      "step": 10000
    },
    {
      "epoch": 1.26,
      "grad_norm": 6.405815601348877,
      "learning_rate": 4.873845598845599e-05,
      "loss": 0.4444,
      "step": 10500
    },
    {
      "epoch": 1.26,
      "eval_f1": 0.5958880582085585,
      "eval_loss": 0.8722940683364868,
      "eval_precision": 0.5870961573122971,
      "eval_recall": 0.6621933621933621,
      "eval_runtime": 10.0728,
      "eval_samples_per_second": 87.166,
      "eval_steps_per_second": 5.46,
      "step": 10500
    },
    {
      "epoch": 1.32,
      "grad_norm": 3.5875844955444336,
      "learning_rate": 4.8678330928330925e-05,
      "loss": 0.4269,
      "step": 11000
    },
    {
      "epoch": 1.32,
      "eval_f1": 0.5525570018606619,
      "eval_loss": 0.7856002449989319,
      "eval_precision": 0.6150631452676062,
      "eval_recall": 0.5520914211236793,
      "eval_runtime": 9.6968,
      "eval_samples_per_second": 90.545,
      "eval_steps_per_second": 5.672,
      "step": 11000
    },
    {
      "epoch": 1.38,
      "grad_norm": 8.949612617492676,
      "learning_rate": 4.8618205868205866e-05,
      "loss": 0.4322,
      "step": 11500
    },
    {
      "epoch": 1.38,
      "eval_f1": 0.6400986522737416,
      "eval_loss": 0.7404754757881165,
      "eval_precision": 0.6430963017398649,
      "eval_recall": 0.6553870502257598,
      "eval_runtime": 10.249,
      "eval_samples_per_second": 85.667,
      "eval_steps_per_second": 5.366,
      "step": 11500
    }
  ],
  "logging_steps": 500,
  "max_steps": 415800,
  "num_input_tokens_seen": 0,
  "num_train_epochs": 50,
  "save_steps": 500,
  "total_flos": 0.0,
  "train_batch_size": 16,
  "trial_name": null,
  "trial_params": null
}