File size: 1,114 Bytes
85f7435 a876ea7 df42c7c 419d9dd df42c7c a876ea7 094f4df 7e196a6 507254e 7e196a6 507254e 18c2f1c 507254e 7e196a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
base_model:
- openai/whisper-large-v3-turbo
datasets:
- mozilla-foundation/common_voice_17_0
- google/fleurs
language:
- th
library_name: transformers
pipeline_tag: automatic-speech-recognition
---
```python
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import torch
MODEL_NAME = "FILM6912/whisper-large-v3-turbo-thai"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(
MODEL_NAME,
torch_dtype=torch_dtype,
# low_cpu_mem_usage=True,
# use_safetensors=True,
)
model.to(device)
processor = AutoProcessor.from_pretrained(MODEL_NAME)
whisper = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
torch_dtype=torch_dtype,
device=device,
)
whisper("c.mp3",
chunk_length_s=30,
stride_length_s=5,
batch_size=16,
return_timestamps=True,
generate_kwargs = {"language":"<|th|>"}
)
```
|