File size: 56,730 Bytes
6132152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
---
base_model: microsoft/mpnet-base
datasets:
- mteb/askubuntudupquestions-reranking
- mteb/mind_small
- mteb/scidocs-reranking
- mteb/stackoverflowdupquestions-reranking
- mteb/arguana
- mteb/climate-fever
- mteb/cqadupstack-android
- mteb/cqadupstack-english
- mteb/biosses-sts
- mteb/sickr-sts
- mteb/sts12-sts
- mteb/sts13-sts
language:
- en
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5130135
- loss:MultipleNegativesSymmetricRankingLoss
- loss:CoSENTLoss
- dataset_size:8233
widget:
- source_sentence: "This is a sample source sentence."  # Ensure this is not empty
  target_sentence: "This is a sample target sentence."  # Ensure this is not empty
  sentences:
  - Broadband is a necessary evolution of internet technology that firms would be
    wise to avail of if they wish to remain competitive. But it is this very desirability
    that makes the provision of broadband a lucrative business in which many firms
    participate. Business on a large scale is rarely organised in diffuse patterns,
    but clustered in major population centres. Economic development can be furnished
    by the private sector investing in broadband where there is a market. Growth will
    not be slowed just because some farmers in Nebraska have slower internet. Singapore
    is an aberrant example, as it is so small and its population so dense that it
    would be impossible to compare its provision of broadband access to most other
    countries.
  - 'In retrospect, the decision to welcome the former Soviet states in the Baltic
    into NATO appears foolish. They continue to have a prickly relationship with Russia,
    which has some legitimate concerns about the treatment of large Russian minorities
    in Latvia and Estonia, and about the siting of US nuclear defences. Their entry
    into NATO was forced upon Russia, which naturally saw it as an aggressive move
    designed to humiliate it, and marked the point when its pro-western policy shifted
    to a more nationalist and confrontational approach. [1] It also weakened the unity
    of NATO as there are quite legitimate doubts as to whether all the alliance’s
    members would really go to war with Russia over the integrity of, say, Estonia.
    Given this history, it would be madness to compound the problem by extending NATO
    membership to Georgia and Ukraine.  [1] Fraser, Malcolm, ‘Ukraine: there’s no
    way out unless the west understands its past mistakes’, theguardian.com, 3 March
    2014,'
  - 'We need to be critical of the cumulative potential of the tax model proposed.
    Firstly, the theory of the state’s capacity and how it functions in practice differ
    substantially. The idea of taxation acting to enhance the productive capacity
    of a nation is based on assumptions that the institutions, human resources, and
    state-capacity, are already present. This is not always the case in Africa.  Corruption
    and bad governance are prevalent. Reforms in 1996 to curb corruption in the TRA
    were reversed due to misunderstanding the nature of corruption amongst tax officials
    and administration (Fjelstad, 2003). Tax-revenue performance remains comparatively
    low [1] , there is little reason to simply altering what taxes there are will
    change this.  Finally, alternative methods can be used to assist rural infrastructure
    projects, and enable national savings. For example, revising the role of agricultural
    marketing boards [2] .  [1] See further readings: Gray and Kahn, 2010.  [2] See
    further readings: Baffes, 2005.'
- source_sentence: advantages/disadvantages of installing from source code
  sentences:
  - 'is it there any advantage to unticking the `` source code '''' entry of a repository
    ? what is the advantage to build unity from source ffmpeg : installing from repository
    or compiling from source ?'
  - 'flash player issues flash player alternative for firefox flash videos go fullscreen
    once ( firefox ) , then after minimising it and trying to go fullscreen again
    it freezes ( ubuntu 14.04 , gnome desktop ) choppy flash video playback , ''settings
    '' disabled for flash as well flash player is not working and do n''t know what
    to do to fix it flash player : sound distorted error flash chrome in ubuntu 14.04'
  - how to install newest version of minitube from source installing two version of
    a software how to find source for a line in $ path ? how do i install network
    driver source code to /lib/modules/ < kernel version > /build/drivers/net/ethernet
    ca n't install vmware-view-client from partner repo in saucy why apt-get does
    n't install the newest software what is the right way to reinstall from source
    after package was installed via apt ? do i have to remove open drivers to switch
    to fglrx ? how do i install clang version 3 in 10.10 ? adding extract tool to
    nautilus ( compiled from source code ) how to point to boost built from source
    how to remove httpd built from source if i build a package from source how can
    i uninstall or remove completely ? avoid reinstall virtualbox and update to the
    latest release installing only ruby 1.9 can i update software installed from source
    code directly determine which package ( s ) were installed from a particular source
- source_sentence: will i be able to upgrade to 13.04 from 12.10 with a wubi installation
    ?
  sentences:
  - add cron job on startup from a script
  - upgrading from 12.10 wubi install to 13.04 can i safely upgrade ubuntu 12.10 to
    13.04 which installed using wubi ? will i be able to use wubi to install ubuntu
    releases newer than 12.10 ? installing ubuntu in windows 8 with wubi
  - upgrade from ubuntu server 12.10 to 13.04 wubi after upgrading windows 7 to windows
    8 should i use wubi ubuntu 12.04 for my academic studies like writing docs , programming
    , etc ? how to do a fresh re-installation of ubuntu safely on dual boot ? wubi
    12.10 installation on windows 8 hangs do i keep my windows installation if i install
    ubuntu with wubi , the windows installer ? move wubi installation of ubuntu to
    a different partition in windows failed why was wubi removed from 13.04+ backup
    , install and restore programms/settings of ubuntu ( wubi ) installation unable
    to install ubuntu 12.10 with wubi in windows 7 - wubi is stuck upgrading my wubi
    11.04 to 11.10 no additional driver no usb or dvd drive and not able to migrate
    wubi ( no clue ) how can i remove windows and upgrade wubi install to a full install
    without a cd or usb stick ? upgrade ubuntu to 13.04 from 12.10 on dual-boot laptop
    upgrading ubuntu 12.10 to 13.04 using bootable usb alongside windows 7
- source_sentence: how do i use ubuntu 's web application integration ?
  sentences:
  - out of the box ubuntu 13.04 with chromium does not automatically use web apps
  - why i do not have gnome shell with gnome 3 ? no gnome shell after install on ubuntu
    12.04 inside vmware workstation
  - how do i put a web application on the launcher ? how can i force ubuntu to use
    font a instead font b in all applications and web pages ? how to remove the web
    app shortcut created by chromium ? is there any finished tutorial on how to develop
    and package unity web apps ? how do i put web applications in my unity launcher
    ? how to ftp transfer files to /var/www ? i would like to set up a ubuntu os on
    amazon web server , how do i do this is there a way to request support for web
    applications not currently supported ? how to test web applications for mobile
    devices on ubuntu ? can i use unity web apps in ubuntu 13.10 ? how to create chrome/chromium
    web application desktop shortcut ? icedtea-web 1.5 needs confirmation to run trusted
    applet xul + unity web api hp pavilion dv2000 web camera driver how to open applications
    after booting a purely command line interface ? trouble connecting to wireless
    via clear hub express are web apps still part of ubuntu 's future ? newer versions
    of chromium ? powerpc macs and 12.04 lts application support
- source_sentence: 'This form of necrosis, also termed necroptosis, requires the activity
    of receptor-interacting protein kinase 1 (RIP1) and its related kinase, RIP3 '
  sentences:
  - This large-scale study showed that IDH1/IDH2 mutations were mutually exclusive
    with inactivating TET2 mutations, suggesting that the two types of mutations had
    similar effects and were thus functionally redundant.
  - Co-transfection of miRVec-miR-204 and the Renilla-3′ UTR plasmid was in HEK293T
    cells with TransIT-LT1 Transfection Reagent (Mirus)
  - TNF-mediated programmed necrosis typically involves the receptor-interacting serine-threonine
    kinases 1 and 3 (RIP1 and RIP3), as evidenced in human, mouse, and zebrafish cell
    lines, as well as in a murine sepsis model
---

# SentenceTransformer based on microsoft/mpnet-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [reranking_1](https://huggingface.co/datasets/mteb/askubuntudupquestions-reranking), [retrival_1](https://huggingface.co/datasets/mteb/arguana) and [sts_1](https://huggingface.co/datasets/mteb/biosses-sts) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - [reranking_1](https://huggingface.co/datasets/mteb/askubuntudupquestions-reranking)
    - [retrival_1](https://huggingface.co/datasets/mteb/arguana)
    - [sts_1](https://huggingface.co/datasets/mteb/biosses-sts)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'This form of necrosis, also termed necroptosis, requires the activity of receptor-interacting protein kinase 1 (RIP1) and its related kinase, RIP3 ',
    'TNF-mediated programmed necrosis typically involves the receptor-interacting serine-threonine kinases 1 and 3 (RIP1 and RIP3), as evidenced in human, mouse, and zebrafish cell lines, as well as in a murine sepsis model',
    'This large-scale study showed that IDH1/IDH2 mutations were mutually exclusive with inactivating TET2 mutations, suggesting that the two types of mutations had similar effects and were thus functionally redundant.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### reranking_1

* Dataset: [reranking_1](https://huggingface.co/datasets/mteb/askubuntudupquestions-reranking) at [4d853f9](https://huggingface.co/datasets/mteb/askubuntudupquestions-reranking/tree/4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c)
* Size: 337 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 14.94 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 84.1 tokens</li><li>max: 407 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 188.2 tokens</li><li>max: 391 tokens</li></ul> |
* Samples:
  | anchor                                                                        | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
  |:------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>black screen after installation with wubi</code>                        | <code>will installing ubuntu harm my computer ? wubi boot problem ca n't install on an emachines e725 black screen after purple ubuntu screen error , then black screen after wubi 11.10 goes into purple screen with black squares trying to login ( using wubi ) system hangs after wubi install screen turns off on boot dark purple screen with graphic corruption at boot , using wubi can i install 32 bit ubuntu on dual boot with 64 bit windows 7 ? black screen during installation ubuntu 12.10 via wubi on hp pavillion g6-1273s1 ubuntu wont boot after installing wubi from windows 7 windows 8 dual boot problem dual boot , ubuntu wo n't boot ! second wubi installation not working ubuntu after boot shows a black screen with a warning reboot required</code> | <code>how to fix black screen after boot purple then black screen after booting ? black screen after the grub screen ca n't boot after update , purple/black screen</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
  | <code>wubi gives error 'nonetype ' object has no attribute 'get_info '</code> | <code>nonetype object has no attribute get_info ubuntu 14.04 can not install ubuntu 13.04 using wubi why does wubi installation fail with `` error : 'none type ' object has no attribute 'get_info ' '' ? error - 'nonetype ' object has no attribute 'get_info ' during xubuntu installation ca n't install 12.04 inside windows 7 using wubi error while installing ubuntu as separate os on my pc ? wubi 's error while installin ubuntu 12.10 on windows 7 why is wubi giving me an error message when i try to install ? ubuntu 12.10 install fails , both native and wubi asus eeepc 1015cx ubuntu 32 bits or 64bits ?</code>                                                                                                                                               | <code>attributeerror : 'module ' object has no attribute openshot does n't launch with `` failed to import '' message software center not working ubuntu one not syncing ... in windows xp sp3 ubuntu one for windows client : `` attributeerror '' messages ubuntu one sign in error ( after installation completed ) : `` nonetype '' object has no attribute `` make file '' `` attributeerror : 'nonetype ' object has no attribute 'group ' '' when trying to use youtube-dl ' '' windows backend object has no attribute 'iso-path ' - see log for details . ' error when trying to install how can i resolve a 'windows backend : object has no attribute iso_path ' error while installing with wubi ? 'module ' object has no attribute 'py2 '</code> |
  | <code>give permission to /var/www</code>                                      | <code>write permissions in /var/www folder folders and files permission problem user ca n't ftp to a directory but is part of the group that owns it how to give read write permission to a folder and its sub folders and files ? give apache permission to write to /home/*/www/ directories give www-data write permission to /home ? assining permission to www folder problems with the /var/www folder trouble accessing www folders - permission or ownership ? group access to directory i am part of a group , but i can not create files apache 'you do n't have permission to access / on this server '</code>                                                                                                                                                          | <code>missing /var/www lubuntu 13.04 change permission from -rwxrwxr-x to drwxrwxr-x wordpress upload permission on nginx & ubuntu how do i restore the default permission on a directory/folder ? file permission in www/html directory for security problem while installing visual paradigm uml tool ? setting up home folders for users for 12.04 server edition -ls : can not open directory . : permission denied changed apache www folder</code>                                                                                                                                                                                                                                                                                                       |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### retrival_1

* Dataset: [retrival_1](https://huggingface.co/datasets/mteb/arguana) at [c22ab2a](https://huggingface.co/datasets/mteb/arguana/tree/c22ab2a51041ffd869aaddef7af8d8215647e41a)
* Size: 7,806 training samples
* Columns: <code>title</code> and <code>text</code>
* Approximate statistics based on the first 1000 samples:
  |         | title                                                                            | text                                                                                |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 2 tokens</li><li>mean: 5.42 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 41 tokens</li><li>mean: 199.3 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | title         | text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
  |:--------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code></code> | <code>Not having children is environmentally friendly  The more people consume in the world, the greater the environmental damage. An average American produces 52 tons of garbage by the age of 75.* However, producing extra litter and pollution is not the only hazard that every child poses to the planet. Increasing world’s population also places incredible stress on Earth’s resources. It is estimated, for instance, that by 2025 three billion people will live in water-scarce countries. By reducing the number of human beings we will manage to avoid numerous overpopulation crises and reverse the damage done to the environment.  * Tufts Climate Initiative., 2006,</code>                                                                                     |
  | <code></code> | <code>The need for interaction is all the more reason to ensure that all ideas are in the marketplace. This way, the veracity of all ideas are questioned. For example, if someone brings bigoted ideas with them as a freshman, perhaps because these ideas were prevalent in the community they grew up in, if they cannot express these ideas and be challenged they may never attempt to integrate. Instead, they will gravitate to those who share their ideas and remain isolated.</code>                                                                                                                                                                                                                                                                                       |
  | <code></code> | <code>Putting the power to censor the internet, no matter how stringent or specific the guidelines, into the hands of a private organization is misguided. It is the state not individual ISPs who are needed to assess how dangerous a site is, whether it is actually promoting extremism, and ultimately make a decision as to whether a site needs to be blocked. The ISPs may end up being the actors that implement the policy but it has to be government that decides which websites to block and why. This also means that the decision would be much more centralised. Leaving this decision to the discretion of individual ISPs will mean that some websites will be blocked on some ISPs and not on others. Only government can ensure that there is consistency.</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### sts_1

* Dataset: [sts_1](https://huggingface.co/datasets/mteb/biosses-sts) at [9ee918f](https://huggingface.co/datasets/mteb/biosses-sts/tree/9ee918f184421b6bd48b78f6c714d86546106103)
* Size: 90 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          | score                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                          |
  | details | <ul><li>min: 13 tokens</li><li>mean: 39.44 tokens</li><li>max: 88 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 38.43 tokens</li><li>max: 95 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.24</li><li>max: 4.0</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                    | sentence2                                                                                                                                                                                                                                       | score            |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>As p16INK4a blocks the inactivation of pRb by cyclin-dependent kinases, and Arf blocks the inactivation of p53 by Mdm2-mediated proteolysis, both have the capacity to cause cell cycle arrest.</code> | <code>By inducing Arf and Ink4a in primary rodent fibroblasts, oncogenic Ras expression leads to growth arrest and premature senescence.</code>                                                                                                 | <code>2.4</code> |
  | <code>Several lines of evidence suggest that the known principal RB pathway lesions in human tumors act in a mutual exclusive manner.</code>                                                                 | <code>In individual human tumor specimens, these principal components of the pathway—RB-CDK4/6-p16INK4A—are reported to be targeted in a mutually exclusive manner.</code>                                                                      | <code>3.4</code> |
  | <code>T47D, MCF-7, Skbr3, HeLa, and Caco-2 cells were transfected by electroporation as described previously.</code>                                                                                         | <code> MCF7 or HeLa cells were electroporated as described previously to more than 95% efficiency with pSuper constructs against the various targets, and 72 hr later, protein expression was analyzed by SDS-PAGE and Western blotting.</code> | <code>3.0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Evaluation Datasets

#### reranking_1

* Dataset: [reranking_1](https://huggingface.co/datasets/mteb/askubuntudupquestions-reranking) at [4d853f9](https://huggingface.co/datasets/mteb/askubuntudupquestions-reranking/tree/4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c)
* Size: 38 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                           | positive                                                                            | negative                                                                            |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              | string                                                                              |
  | details | <ul><li>min: 7 tokens</li><li>mean: 14.0 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 77.58 tokens</li><li>max: 371 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 196.55 tokens</li><li>max: 291 tokens</li></ul> |
* Samples:
  | anchor                                                                                           | positive                                                                                                                                                                                                                                                                                                                                                                                 | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
  |:-------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>how do i clean install windows 7 on the `` other '' partition ?</code>                     | <code>how to partition disk in ubuntu and then install windows 7 ? install windows 7 on seperate partitions without losing grub how do i create a partion to install windows ? doubt : about dual boot ( 14.04 with windows 7 ) how do i install windows 7 from an iso file on a separate partition from ubuntu ? how to partition for a dual boot</code>                                | <code>install ubuntu in a specific partition side by side with windows 7 windows 7 system partition i have xp on one partition and windows 7 on another . how do i install ubuntu on a seperate partition ? cant ' dual install xubuntu and windows 7 i have formatted a partition for ubuntu . how do i install it on that partition ? grub wo n't load windows 7 ( unknown file system ) how to delete windows xp and integrate its partition to ubuntu ? uninstalling ubuntu when it is on the windows partition upgrading current version of ubuntu , on a multi boot system . a partition is necessary before installing ubuntu on windows 7 ? how to do a clean reinstall of ubuntu ? can i use testdisk to recover the windows partition over which ubuntu was installed ? how to update dual boot windows 7 / ubuntu 13.04 to 14.04 if i chose `` replace windows with ubuntu '' , do i lose the other partition too ?</code>                                                                                                                                  |
  | <code>is it possible to have two different dpi configurations for two different screens ?</code> | <code>how can i change the dpi of my monitors separately ? using external monitor with laptop monitor as separate monitors resolution in login screen different text scaling factors for different displays ? external display is showing and reporting wrong resolutions hard drive encryption boot screen resolution how to disable clone display mode on ubuntu login screen ?</code> | <code>change logon screen display configuration login screen on the wrong monitor only one resolution available in xorg.conf force gdm login screen to the primary monitor how to find and change the screen dpi ? dual screen different font resolution how can i display laptop screen on the tv by hdmi in kubuntu how do i turn off the laptop screen while using an external monitor ? adapt ubuntu to a high-dpi resolution screen how can i change my login screen resolution when connected to my monitor ( 12.04 ) dpi setting in ubuntu 13.10 resolution of the login screen is wrong on a second monitor force full-screen game to one monitor ?</code>                                                                                                                                                                                                                                                                                                                                                                                                     |
  | <code>any command line calculator for ubuntu ?</code>                                            | <code>quick simple mathematics calculations ubuntu calculator in dash</code>                                                                                                                                                                                                                                                                                                             | <code>shortcut to open/focus terminal window how to assign shortcut keys in gnome ? menu bar not visible on gnome-calculator how to permanently enable in-dash calculator in 13.10 a good hex/binary calculator command line calculator that keeps fractional values is there any calculator in software centre which could solve quadratic equations ? how to make shortcut to terminal application ? can calculator show decimal as fraction ? how to open pseudo-terminal devices on terminal ? keep calculator from opening a new window every time i press the `` calculator '' button on the keyboard ? keyboard shortcut for terminal does n't work since updating to 12.10 decimal point from number pad wo n't work on the calculator but will everywhere else how to set qalculator as default calculator ? what is 'calculator ' package ? how to get a 'non-screenlet ' calculator in compiz widget layer ? how do i use the 'scientific ' mode in the calculator ? how can i capture text from my terminal without redirecting it to a text file ?</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### retrival_1

* Dataset: [retrival_1](https://huggingface.co/datasets/mteb/arguana) at [c22ab2a](https://huggingface.co/datasets/mteb/arguana/tree/c22ab2a51041ffd869aaddef7af8d8215647e41a)
* Size: 868 evaluation samples
* Columns: <code>title</code> and <code>text</code>
* Approximate statistics based on the first 1000 samples:
  |         | title                                                                           | text                                                                                 |
  |:--------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                          | string                                                                               |
  | details | <ul><li>min: 2 tokens</li><li>mean: 5.0 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 26 tokens</li><li>mean: 204.03 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | title         | text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
  |:--------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code></code> | <code>Behind the veil of ignorance, human beings may not in fact side with what gives them the statistical greatest chance of survival. As Rawls himself notes, people are naturally risk-averse, and thus will select the rules that protect them from the worst possible situations, even if that sacrifice would help many others. Most people find the prospect of being actively killed by the conscious action of another human being worse than simply dying in an accident, and would seek to protect themselves against that worse outcome.</code>                                                                                                                      |
  | <code></code> | <code>Schengen membership is not the same as EU membership – some non-EU states, such as Switzerland are part of Schengen, the UK and Ireland are EU member states but are not. Joining Schengen would involve the politically sensitive issue of undocumented migrants, which could not only be fatal to Cape Verde joining Schengen but to integration with Europe itself. Even if it is unlikely, is it that difficult for people to show a passport?  Besides, tourism is not just from Europe to outside – a Euro move would only stop Europeans from needing to change currencies. The peg is the best of both worlds in that it means that the currency is stable.</code> |
  | <code></code> | <code>News organisations cannot be completely transparent if they are to do their job properly and News International is no exception. Such organisations cannot for example reveal their sources as this may sometimes put their sources at risk and would mean that others would not come forward. As part of this news companies need to keep secret how they obtained information. While an attempt by a newspaper to cover up crimes is regrettable this one newspapers actions should not tar the whole company and its other papers.</code>                                                                                                                               |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### sts_1

* Dataset: [sts_1](https://huggingface.co/datasets/mteb/biosses-sts) at [9ee918f](https://huggingface.co/datasets/mteb/biosses-sts/tree/9ee918f184421b6bd48b78f6c714d86546106103)
* Size: 10 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 17 tokens</li><li>mean: 38.4 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 46.8 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 1.76</li><li>max: 3.2</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                      | sentence2                                                                                                                                                                                                                               | score            |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>Recently, it was reported that expression of IDH1R132H suppresses TET2 activity and the mutations of IDH1 and IDH2 genes occur in a mutual exclusive manner with that of TET2 gene in AML </code>                                        | <code>The mechanism was clarified by yet another genomic survey, this time involving acute myelogenous leukemia (AML).</code>                                                                                                           | <code>1.4</code> |
  | <code>Recently, it was reported that expression of IDH1R132H suppresses TET2 activity and the mutations of IDH1 and IDH2 genes occur in a mutual exclusive manner with that of TET2 gene in AML.</code>                                        | <code>This large-scale study showed that IDH1/IDH2 mutations were mutually exclusive with inactivating TET2 mutations, suggesting that the two types of mutations had similar effects and were thus functionally redundant.</code>      | <code>3.2</code> |
  | <code>A gene that warrants further studies is the erythropoietin receptor that is 7.4-fold higher expressed in TEL-AML1-positive cases compared to other precursor B-ALL cases confirming other gene expression classification studies.</code> | <code>Another recent gene expression study of large numbers of cases provided support for the hypothesis that distinct leukemias are specified by each of the unique chromosomal abnormalities found in lymphoblastic leukemias.</code> | <code>0.6</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 2
- `per_device_eval_batch_size`: 2
- `gradient_accumulation_steps`: 8
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 2
- `per_device_eval_batch_size`: 2
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | reranking 1 loss | retrival 1 loss | sts 1 loss |
|:------:|:----:|:-------------:|:----------------:|:---------------:|:----------:|
| 0.9716 | 500  | 0.4296        | -                | -               | -          |
| 0.9988 | 514  | -             | 0.2080           | 0.1297          | 0.1096     |
| 0.9716 | 500  | 0.0933        | -                | -               | -          |
| 0.9988 | 514  | -             | 0.2104           | 0.1012          | 0.5515     |
| 0.9716 | 500  | 0.0435        | -                | -               | -          |
| 0.9988 | 514  | -             | 0.2026           | 0.1434          | 0.4824     |
| 0.9716 | 500  | 0.0282        | -                | -               | -          |
| 0.9988 | 514  | -             | 0.1827           | 0.1305          | 0.2950     |
| 1.9432 | 1000 | 0.0555        | -                | -               | -          |
| 1.9995 | 1029 | -             | 0.3932           | 0.0693          | 0.8649     |
| 2.9147 | 1500 | 0.0151        | -                | -               | -          |
| 2.9983 | 1543 | -             | 0.2112           | 0.0555          | 0.5478     |
| 3.8863 | 2000 | 0.0036        | -                | -               | -          |
| 3.9990 | 2058 | -             | 0.1921           | 0.0432          | 0.5912     |
| 4.8579 | 2500 | 0.0013        | -                | -               | -          |
| 4.9939 | 2570 | -             | 0.1904           | 0.0412          | 0.6356     |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->