Upload PPO LunarLander-v2 trained agent
Browse files- FIT17.zip +3 -0
- FIT17/_stable_baselines3_version +1 -0
- FIT17/data +94 -0
- FIT17/policy.optimizer.pth +3 -0
- FIT17/policy.pth +3 -0
- FIT17/pytorch_variables.pth +3 -0
- FIT17/system_info.txt +7 -0
- README.md +36 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
FIT17.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d82f53273b8901f0f187f94adca6bc97c40c9c85898ecb0a46942b1f17606106
|
3 |
+
size 147150
|
FIT17/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.1
|
FIT17/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6eb66395f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6eb6639680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6eb6639710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6eb66397a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6eb6639830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6eb66398c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6eb6639950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6eb66399e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6eb6639a70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6eb6639b00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6eb6639b90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f6eb667fc30>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1664540424609212755,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqIDb18JCo/QMRWvd+Lbr5NPuG9brdPvgAAAAAAAAAAmvdZva5Stz9tDdK+QrCIvdenH72OED2+AAAAAAAAAAD2fxY/rB3yPCUhVrr+Mn+33uCrPPV+gzkAAIA/AACAP0ZxMD422TW8PGeCuWvcIji7GZ69/vmrOAAAgD8AAIA/kz0VPptROD8YDmc82haAvo/jMjz+7lO9AAAAAAAAAABmV6a9sYedPe78aj71Why+Be+Lve4S0T0AAAAAAAAAADNO0LykYBS5uw/KO76zuDhiMpa6CpF/ugAAgD8AAIA/DVf5PYWvnDq63XK7piKvuSU6CDwpcZK6AACAPwAAgD/K7tY+lcPYPnBvHTvcizu+/DCSvUMBdjwAAAAAAAAAAE0tsT6Xi0i9Qv5hunD3DTmcS2i+mFqIOQAAgD8AAIA/iEsJP7EXJz74IP29biOlvFlq/D0Q4Wi9AACAPwAAgD9NZC69rlGbugTDDzyM+I43JPB8Osj/eTYAAIA/AACAP81iG71cLzq63kCGt4la6jQiCvK61h2XNgAAgD8AAIA/TeLVPR89rrnYAKQ6G1hLNkherTtRisG5AACAPwAAgD8zXwo8JlWwP8L3jT5Hj/K+FrBCvNYss70AAAAAAAAAAE1yBb29p5g/qy6pvURuj77BezW9UifivQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhLcHISAzSUCUhpRSlIwBbJRN6AOMAXSUR0CBh9CtRvWIdX2UKGgGaAloD0MI+1sC8E+1X0CUhpRSlGgVTegDaBZHQIGR4ztTkyV1fZQoaAZoCWgPQwjmIynpYUpaQJSGlFKUaBVN6ANoFkdAgZSNQbdadXV9lChoBmgJaA9DCCs0EMtmyFpAlIaUUpRoFU3oA2gWR0CBn6eS0Sh8dX2UKGgGaAloD0MIGjGzz2MMP0CUhpRSlGgVTegDaBZHQIGkiAOJ+Dx1fZQoaAZoCWgPQwgQy2YOSd08QJSGlFKUaBVLxGgWR0CBrzO0svqUdX2UKGgGaAloD0MI0a3X9KAKW0CUhpRSlGgVTegDaBZHQIG8RxkupS91fZQoaAZoCWgPQwhws3ixsCNjQJSGlFKUaBVN6ANoFkdAgcf4u01IiHV9lChoBmgJaA9DCOFdLuI7ol9AlIaUUpRoFU3oA2gWR0CB7hb9qDbrdX2UKGgGaAloD0MIWHA/4IEyYUCUhpRSlGgVTegDaBZHQIHxzJZGKAJ1fZQoaAZoCWgPQwgXghyUsKliQJSGlFKUaBVN6ANoFkdAgfMD0L+glHV9lChoBmgJaA9DCOT1YFJ8b2JAlIaUUpRoFU3oA2gWR0CB/SVSGahIdX2UKGgGaAloD0MIXAGFevrASMCUhpRSlGgVS9toFkdAgf/F/YraunV9lChoBmgJaA9DCCrJOhxds1VAlIaUUpRoFU3oA2gWR0CCBsJa7mMgdX2UKGgGaAloD0MIH0jeOZTFVUCUhpRSlGgVTegDaBZHQIIIsKeCkGl1fZQoaAZoCWgPQwj7IMuCifs9QJSGlFKUaBVLsmgWR0CCCfMxoIv8dX2UKGgGaAloD0MIonprYKtoXkCUhpRSlGgVTegDaBZHQIIXJ+BpYcN1fZQoaAZoCWgPQwjt2AjE6/tSQJSGlFKUaBVN6ANoFkdAghnPkq+ajXV9lChoBmgJaA9DCDbqIRrdZUNAlIaUUpRoFU3oA2gWR0CCGg/8EV32dX2UKGgGaAloD0MIlGsKZHY3UMCUhpRSlGgVS51oFkdAgiq4gaFVUHV9lChoBmgJaA9DCE7VPbK5w15AlIaUUpRoFU3oA2gWR0CCM+Yl6Z6VdX2UKGgGaAloD0MI8db5t8uSVUCUhpRSlGgVTegDaBZHQII+fdyksSV1fZQoaAZoCWgPQwh8mShCaqNgQJSGlFKUaBVN6ANoFkdAgkxwwj+rEXV9lChoBmgJaA9DCDkNUYU/TWJAlIaUUpRoFU3oA2gWR0CCUbozN2TxdX2UKGgGaAloD0MINpNvtrkvXUCUhpRSlGgVTegDaBZHQIJc921UlzF1fZQoaAZoCWgPQwjnUfF/R/1WQJSGlFKUaBVN6ANoFkdAgnW6+vhZQ3V9lChoBmgJaA9DCH/C2a1l6mJAlIaUUpRoFU3oA2gWR0CCdwr/bTMJdX2UKGgGaAloD0MIjuVd9YCxX0CUhpRSlGgVTegDaBZHQIKf3TZxrBV1fZQoaAZoCWgPQwgoucMmMuFVwJSGlFKUaBVNaAFoFkdAgqp7Qswta3V9lChoBmgJaA9DCFab/1cdrlxAlIaUUpRoFU3oA2gWR0CCq8GtZFG5dX2UKGgGaAloD0MIm+RH/IoXXkCUhpRSlGgVTegDaBZHQIKuO/i5uqF1fZQoaAZoCWgPQwieQxmq4rJgQJSGlFKUaBVN6ANoFkdAgrSwJHAh0XV9lChoBmgJaA9DCG5uTE9YpltAlIaUUpRoFU3oA2gWR0CCtooLG7z1dX2UKGgGaAloD0MIrYcvE0X5XECUhpRSlGgVTegDaBZHQIK3u6Zpi7V1fZQoaAZoCWgPQwiFtMagE9JVQJSGlFKUaBVN6ANoFkdAgsXibtqpLnV9lChoBmgJaA9DCLIPsiyYylRAlIaUUpRoFU3oA2gWR0CCxiC7sfJWdX2UKGgGaAloD0MIDOiFOxeGEMCUhpRSlGgVS7ZoFkdAgsuYkeIVM3V9lChoBmgJaA9DCO+OjNXm+UnAlIaUUpRoFU0FAWgWR0CC0/RfnfVJdX2UKGgGaAloD0MIu9Vz0vuTYECUhpRSlGgVTegDaBZHQILV9xCIDYB1fZQoaAZoCWgPQwgGLSRg9CNhwJSGlFKUaBVNBgJoFkdAgtnVfu1F6XV9lChoBmgJaA9DCMtMaf0t+FdAlIaUUpRoFU3oA2gWR0CC3fLh73PBdX2UKGgGaAloD0MIQRGLGHbETkCUhpRSlGgVTegDaBZHQILmBGWldkd1fZQoaAZoCWgPQwhaY9AJoQddQJSGlFKUaBVN6ANoFkdAgvI7XpW3jXV9lChoBmgJaA9DCBtJgnAFtAPAlIaUUpRoFU0aAWgWR0CC90nrpqyodX2UKGgGaAloD0MIhCugUE8rRMCUhpRSlGgVTTsBaBZHQIL98CDEm6Z1fZQoaAZoCWgPQwhJ88e0NnhYQJSGlFKUaBVN6ANoFkdAgwIKv/zasnV9lChoBmgJaA9DCD9z1qccR1NAlIaUUpRoFU3oA2gWR0CDLdI91U2ldX2UKGgGaAloD0MInu3RG+7WXkCUhpRSlGgVTegDaBZHQIMx+ws5GSZ1fZQoaAZoCWgPQwh6NNWTeYBiQJSGlFKUaBVN6ANoFkdAg2RHfl6qsHV9lChoBmgJaA9DCBr9aDjlz2BAlIaUUpRoFU3oA2gWR0CDZagxJul5dX2UKGgGaAloD0MIFsJqLGEFPkCUhpRSlGgVTegDaBZHQINoWGoJiRZ1fZQoaAZoCWgPQwju0LAYdT5fQJSGlFKUaBVN6ANoFkdAg29GrKeTV3V9lChoBmgJaA9DCJ268lkeEmXAlIaUUpRoFU3AA2gWR0CDf2KlYU35dX2UKGgGaAloD0MIp88OuK4jWkCUhpRSlGgVTegDaBZHQIOErxG2Cul1fZQoaAZoCWgPQwhZNQhzu9lZQJSGlFKUaBVN6ANoFkdAg4vcWKuSwHV9lChoBmgJaA9DCGGKcmn8jVxAlIaUUpRoFU3oA2gWR0CDnGq94/u9dX2UKGgGaAloD0MIryKjA5JYWkCUhpRSlGgVTegDaBZHQIOg2eBg/kh1fZQoaAZoCWgPQwiUT49tGSZjQJSGlFKUaBVN6ANoFkdAg6rTjFQ2uXV9lChoBmgJaA9DCBlz1xLyLTrAlIaUUpRoFU2YA2gWR0CDsrfKISDidX2UKGgGaAloD0MI63JKQEySJUCUhpRSlGgVTegDaBZHQIO4aBTXJ5p1fZQoaAZoCWgPQwge3J21211cQJSGlFKUaBVN6ANoFkdAg8RF9Sde6nV9lChoBmgJaA9DCAvrxrsjyFlAlIaUUpRoFU3oA2gWR0CDyBvUjLSvdX2UKGgGaAloD0MI+fTYlgGMVMCUhpRSlGgVTVUBaBZHQIPY6jYZl4F1fZQoaAZoCWgPQwiKyoY1lYleQJSGlFKUaBVN6ANoFkdAg9/Q4S6DoXV9lChoBmgJaA9DCHMSSl8IzFJAlIaUUpRoFU3oA2gWR0CD41mUW2w3dX2UKGgGaAloD0MInz4Cf/hlX0CUhpRSlGgVTegDaBZHQIQS82NvOyF1fZQoaAZoCWgPQwgCY30Dk7lcQJSGlFKUaBVN6ANoFkdAhBRC4jKPn3V9lChoBmgJaA9DCEW6n1MQs2BAlIaUUpRoFU3oA2gWR0CEFrf1pTMrdX2UKGgGaAloD0MIVwT/W8k/VkCUhpRSlGgVTeQDaBZHQIQcZD5TIeZ1fZQoaAZoCWgPQwjmP6TfvlxaQJSGlFKUaBVN6ANoFkdAhCtEBCD28XV9lChoBmgJaA9DCGozTkNUUWZAlIaUUpRoFU3oA2gWR0CEMCj5bhWHdX2UKGgGaAloD0MIkj6toj90YkCUhpRSlGgVTegDaBZHQIQ2mvKU3XJ1fZQoaAZoCWgPQwjSyOcVT/ZQQJSGlFKUaBVN6ANoFkdAhETyiVSn+HV9lChoBmgJaA9DCPOqzmqBt1ZAlIaUUpRoFU3oA2gWR0CESMt9QXQ/dX2UKGgGaAloD0MI5/7qcd/gWkCUhpRSlGgVTegDaBZHQIRY/IXCTEB1fZQoaAZoCWgPQwgH8BZIUABbQJSGlFKUaBVN6ANoFkdAhF6MgMc6vXV9lChoBmgJaA9DCFZhM8AFuRLAlIaUUpRoFU3oA2gWR0CEbVXRPXTWdX2UKGgGaAloD0MIqP+s+fFnUUCUhpRSlGgVTegDaBZHQIRxPwb2lEZ1fZQoaAZoCWgPQwgsY0M3+zFkQJSGlFKUaBVN6ANoFkdAhIJYDDCP63V9lChoBmgJaA9DCCi4WFGDvlRAlIaUUpRoFU3oA2gWR0CEiWxHoX9BdX2UKGgGaAloD0MIU14robuTXkCUhpRSlGgVTegDaBZHQISM72g39751fZQoaAZoCWgPQwj3sBcK2Mo1wJSGlFKUaBVNJwFoFkdAhJVzzd1uBXV9lChoBmgJaA9DCAbzV8hcSVxAlIaUUpRoFU3oA2gWR0CEvINSZSeidX2UKGgGaAloD0MIflaZKS1UYkCUhpRSlGgVTegDaBZHQIS9w+6iCat1fZQoaAZoCWgPQwgEATJ07KhOQJSGlFKUaBVN6ANoFkdAhMAC4axX4nV9lChoBmgJaA9DCLtkHCPZ7FZAlIaUUpRoFU3oA2gWR0CExa8yN4qxdX2UKGgGaAloD0MIgBDJkGPrKMCUhpRSlGgVTegDaBZHQITUyHfuTid1fZQoaAZoCWgPQwjww0FClGNLQJSGlFKUaBVN6ANoFkdAhNn1hCtzS3V9lChoBmgJaA9DCM76lGMymWBAlIaUUpRoFU3oA2gWR0CE4UNtqHoHdX2UKGgGaAloD0MIYDyDhn4PYkCUhpRSlGgVTegDaBZHQITx0lE7W/d1fZQoaAZoCWgPQwjMBwQ6k7JeQJSGlFKUaBVN6ANoFkdAhPY4bCJoCnV9lChoBmgJaA9DCCsXKv9aklZAlIaUUpRoFU3oA2gWR0CFCHLt/nW8dX2UKGgGaAloD0MIQRGLGHauXkCUhpRSlGgVTegDaBZHQIUOYEMb3oN1fZQoaAZoCWgPQwixhovc0zpjQJSGlFKUaBVN6ANoFkdAhR/Bz3h4uHV9lChoBmgJaA9DCOnWa3rQp2BAlIaUUpRoFU3oA2gWR0CFMuxDb8FZdX2UKGgGaAloD0MI2bERiNekXkCUhpRSlGgVTegDaBZHQIU6xIQOFxp1fZQoaAZoCWgPQwiWsgxxrGRfQJSGlFKUaBVN6ANoFkdAhT6ao/A0sXV9lChoBmgJaA9DCGlznNuEYFVAlIaUUpRoFU3oA2gWR0CFR4hC+lCUdX2UKGgGaAloD0MIBi/6ClIYZUCUhpRSlGgVTegDaBZHQIVJTCk43m51fZQoaAZoCWgPQwgDCB9KtHBWQJSGlFKUaBVN6ANoFkdAhUqGdy1eB3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
FIT17/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:836684aa7af2f5e22d8718c9e8cd8b66f18a9f82d7231ee8a725a1bf4721ab81
|
3 |
+
size 87865
|
FIT17/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88b8db841e32aa2ae396e61375ac66f7ad9b6c35c458a075d701f2811f02f7ed
|
3 |
+
size 43201
|
FIT17/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
FIT17/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.14
|
3 |
+
Stable-Baselines3: 1.6.1
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 123.84 +/- 87.24
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6eb66395f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6eb6639680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6eb6639710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6eb66397a0>", "_build": "<function ActorCriticPolicy._build at 0x7f6eb6639830>", "forward": "<function ActorCriticPolicy.forward at 0x7f6eb66398c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6eb6639950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6eb66399e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6eb6639a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6eb6639b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6eb6639b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6eb667fc30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1664540424609212755, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqIDb18JCo/QMRWvd+Lbr5NPuG9brdPvgAAAAAAAAAAmvdZva5Stz9tDdK+QrCIvdenH72OED2+AAAAAAAAAAD2fxY/rB3yPCUhVrr+Mn+33uCrPPV+gzkAAIA/AACAP0ZxMD422TW8PGeCuWvcIji7GZ69/vmrOAAAgD8AAIA/kz0VPptROD8YDmc82haAvo/jMjz+7lO9AAAAAAAAAABmV6a9sYedPe78aj71Why+Be+Lve4S0T0AAAAAAAAAADNO0LykYBS5uw/KO76zuDhiMpa6CpF/ugAAgD8AAIA/DVf5PYWvnDq63XK7piKvuSU6CDwpcZK6AACAPwAAgD/K7tY+lcPYPnBvHTvcizu+/DCSvUMBdjwAAAAAAAAAAE0tsT6Xi0i9Qv5hunD3DTmcS2i+mFqIOQAAgD8AAIA/iEsJP7EXJz74IP29biOlvFlq/D0Q4Wi9AACAPwAAgD9NZC69rlGbugTDDzyM+I43JPB8Osj/eTYAAIA/AACAP81iG71cLzq63kCGt4la6jQiCvK61h2XNgAAgD8AAIA/TeLVPR89rrnYAKQ6G1hLNkherTtRisG5AACAPwAAgD8zXwo8JlWwP8L3jT5Hj/K+FrBCvNYss70AAAAAAAAAAE1yBb29p5g/qy6pvURuj77BezW9UifivQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhLcHISAzSUCUhpRSlIwBbJRN6AOMAXSUR0CBh9CtRvWIdX2UKGgGaAloD0MI+1sC8E+1X0CUhpRSlGgVTegDaBZHQIGR4ztTkyV1fZQoaAZoCWgPQwjmIynpYUpaQJSGlFKUaBVN6ANoFkdAgZSNQbdadXV9lChoBmgJaA9DCCs0EMtmyFpAlIaUUpRoFU3oA2gWR0CBn6eS0Sh8dX2UKGgGaAloD0MIGjGzz2MMP0CUhpRSlGgVTegDaBZHQIGkiAOJ+Dx1fZQoaAZoCWgPQwgQy2YOSd08QJSGlFKUaBVLxGgWR0CBrzO0svqUdX2UKGgGaAloD0MI0a3X9KAKW0CUhpRSlGgVTegDaBZHQIG8RxkupS91fZQoaAZoCWgPQwhws3ixsCNjQJSGlFKUaBVN6ANoFkdAgcf4u01IiHV9lChoBmgJaA9DCOFdLuI7ol9AlIaUUpRoFU3oA2gWR0CB7hb9qDbrdX2UKGgGaAloD0MIWHA/4IEyYUCUhpRSlGgVTegDaBZHQIHxzJZGKAJ1fZQoaAZoCWgPQwgXghyUsKliQJSGlFKUaBVN6ANoFkdAgfMD0L+glHV9lChoBmgJaA9DCOT1YFJ8b2JAlIaUUpRoFU3oA2gWR0CB/SVSGahIdX2UKGgGaAloD0MIXAGFevrASMCUhpRSlGgVS9toFkdAgf/F/YraunV9lChoBmgJaA9DCCrJOhxds1VAlIaUUpRoFU3oA2gWR0CCBsJa7mMgdX2UKGgGaAloD0MIH0jeOZTFVUCUhpRSlGgVTegDaBZHQIIIsKeCkGl1fZQoaAZoCWgPQwj7IMuCifs9QJSGlFKUaBVLsmgWR0CCCfMxoIv8dX2UKGgGaAloD0MIonprYKtoXkCUhpRSlGgVTegDaBZHQIIXJ+BpYcN1fZQoaAZoCWgPQwjt2AjE6/tSQJSGlFKUaBVN6ANoFkdAghnPkq+ajXV9lChoBmgJaA9DCDbqIRrdZUNAlIaUUpRoFU3oA2gWR0CCGg/8EV32dX2UKGgGaAloD0MIlGsKZHY3UMCUhpRSlGgVS51oFkdAgiq4gaFVUHV9lChoBmgJaA9DCE7VPbK5w15AlIaUUpRoFU3oA2gWR0CCM+Yl6Z6VdX2UKGgGaAloD0MI8db5t8uSVUCUhpRSlGgVTegDaBZHQII+fdyksSV1fZQoaAZoCWgPQwh8mShCaqNgQJSGlFKUaBVN6ANoFkdAgkxwwj+rEXV9lChoBmgJaA9DCDkNUYU/TWJAlIaUUpRoFU3oA2gWR0CCUbozN2TxdX2UKGgGaAloD0MINpNvtrkvXUCUhpRSlGgVTegDaBZHQIJc921UlzF1fZQoaAZoCWgPQwjnUfF/R/1WQJSGlFKUaBVN6ANoFkdAgnW6+vhZQ3V9lChoBmgJaA9DCH/C2a1l6mJAlIaUUpRoFU3oA2gWR0CCdwr/bTMJdX2UKGgGaAloD0MIjuVd9YCxX0CUhpRSlGgVTegDaBZHQIKf3TZxrBV1fZQoaAZoCWgPQwgoucMmMuFVwJSGlFKUaBVNaAFoFkdAgqp7Qswta3V9lChoBmgJaA9DCFab/1cdrlxAlIaUUpRoFU3oA2gWR0CCq8GtZFG5dX2UKGgGaAloD0MIm+RH/IoXXkCUhpRSlGgVTegDaBZHQIKuO/i5uqF1fZQoaAZoCWgPQwieQxmq4rJgQJSGlFKUaBVN6ANoFkdAgrSwJHAh0XV9lChoBmgJaA9DCG5uTE9YpltAlIaUUpRoFU3oA2gWR0CCtooLG7z1dX2UKGgGaAloD0MIrYcvE0X5XECUhpRSlGgVTegDaBZHQIK3u6Zpi7V1fZQoaAZoCWgPQwiFtMagE9JVQJSGlFKUaBVN6ANoFkdAgsXibtqpLnV9lChoBmgJaA9DCLIPsiyYylRAlIaUUpRoFU3oA2gWR0CCxiC7sfJWdX2UKGgGaAloD0MIDOiFOxeGEMCUhpRSlGgVS7ZoFkdAgsuYkeIVM3V9lChoBmgJaA9DCO+OjNXm+UnAlIaUUpRoFU0FAWgWR0CC0/RfnfVJdX2UKGgGaAloD0MIu9Vz0vuTYECUhpRSlGgVTegDaBZHQILV9xCIDYB1fZQoaAZoCWgPQwgGLSRg9CNhwJSGlFKUaBVNBgJoFkdAgtnVfu1F6XV9lChoBmgJaA9DCMtMaf0t+FdAlIaUUpRoFU3oA2gWR0CC3fLh73PBdX2UKGgGaAloD0MIQRGLGHbETkCUhpRSlGgVTegDaBZHQILmBGWldkd1fZQoaAZoCWgPQwhaY9AJoQddQJSGlFKUaBVN6ANoFkdAgvI7XpW3jXV9lChoBmgJaA9DCBtJgnAFtAPAlIaUUpRoFU0aAWgWR0CC90nrpqyodX2UKGgGaAloD0MIhCugUE8rRMCUhpRSlGgVTTsBaBZHQIL98CDEm6Z1fZQoaAZoCWgPQwhJ88e0NnhYQJSGlFKUaBVN6ANoFkdAgwIKv/zasnV9lChoBmgJaA9DCD9z1qccR1NAlIaUUpRoFU3oA2gWR0CDLdI91U2ldX2UKGgGaAloD0MInu3RG+7WXkCUhpRSlGgVTegDaBZHQIMx+ws5GSZ1fZQoaAZoCWgPQwh6NNWTeYBiQJSGlFKUaBVN6ANoFkdAg2RHfl6qsHV9lChoBmgJaA9DCBr9aDjlz2BAlIaUUpRoFU3oA2gWR0CDZagxJul5dX2UKGgGaAloD0MIFsJqLGEFPkCUhpRSlGgVTegDaBZHQINoWGoJiRZ1fZQoaAZoCWgPQwju0LAYdT5fQJSGlFKUaBVN6ANoFkdAg29GrKeTV3V9lChoBmgJaA9DCJ268lkeEmXAlIaUUpRoFU3AA2gWR0CDf2KlYU35dX2UKGgGaAloD0MIp88OuK4jWkCUhpRSlGgVTegDaBZHQIOErxG2Cul1fZQoaAZoCWgPQwhZNQhzu9lZQJSGlFKUaBVN6ANoFkdAg4vcWKuSwHV9lChoBmgJaA9DCGGKcmn8jVxAlIaUUpRoFU3oA2gWR0CDnGq94/u9dX2UKGgGaAloD0MIryKjA5JYWkCUhpRSlGgVTegDaBZHQIOg2eBg/kh1fZQoaAZoCWgPQwiUT49tGSZjQJSGlFKUaBVN6ANoFkdAg6rTjFQ2uXV9lChoBmgJaA9DCBlz1xLyLTrAlIaUUpRoFU2YA2gWR0CDsrfKISDidX2UKGgGaAloD0MI63JKQEySJUCUhpRSlGgVTegDaBZHQIO4aBTXJ5p1fZQoaAZoCWgPQwge3J21211cQJSGlFKUaBVN6ANoFkdAg8RF9Sde6nV9lChoBmgJaA9DCAvrxrsjyFlAlIaUUpRoFU3oA2gWR0CDyBvUjLSvdX2UKGgGaAloD0MI+fTYlgGMVMCUhpRSlGgVTVUBaBZHQIPY6jYZl4F1fZQoaAZoCWgPQwiKyoY1lYleQJSGlFKUaBVN6ANoFkdAg9/Q4S6DoXV9lChoBmgJaA9DCHMSSl8IzFJAlIaUUpRoFU3oA2gWR0CD41mUW2w3dX2UKGgGaAloD0MInz4Cf/hlX0CUhpRSlGgVTegDaBZHQIQS82NvOyF1fZQoaAZoCWgPQwgCY30Dk7lcQJSGlFKUaBVN6ANoFkdAhBRC4jKPn3V9lChoBmgJaA9DCEW6n1MQs2BAlIaUUpRoFU3oA2gWR0CEFrf1pTMrdX2UKGgGaAloD0MIVwT/W8k/VkCUhpRSlGgVTeQDaBZHQIQcZD5TIeZ1fZQoaAZoCWgPQwjmP6TfvlxaQJSGlFKUaBVN6ANoFkdAhCtEBCD28XV9lChoBmgJaA9DCGozTkNUUWZAlIaUUpRoFU3oA2gWR0CEMCj5bhWHdX2UKGgGaAloD0MIkj6toj90YkCUhpRSlGgVTegDaBZHQIQ2mvKU3XJ1fZQoaAZoCWgPQwjSyOcVT/ZQQJSGlFKUaBVN6ANoFkdAhETyiVSn+HV9lChoBmgJaA9DCPOqzmqBt1ZAlIaUUpRoFU3oA2gWR0CESMt9QXQ/dX2UKGgGaAloD0MI5/7qcd/gWkCUhpRSlGgVTegDaBZHQIRY/IXCTEB1fZQoaAZoCWgPQwgH8BZIUABbQJSGlFKUaBVN6ANoFkdAhF6MgMc6vXV9lChoBmgJaA9DCFZhM8AFuRLAlIaUUpRoFU3oA2gWR0CEbVXRPXTWdX2UKGgGaAloD0MIqP+s+fFnUUCUhpRSlGgVTegDaBZHQIRxPwb2lEZ1fZQoaAZoCWgPQwgsY0M3+zFkQJSGlFKUaBVN6ANoFkdAhIJYDDCP63V9lChoBmgJaA9DCCi4WFGDvlRAlIaUUpRoFU3oA2gWR0CEiWxHoX9BdX2UKGgGaAloD0MIU14robuTXkCUhpRSlGgVTegDaBZHQISM72g39751fZQoaAZoCWgPQwj3sBcK2Mo1wJSGlFKUaBVNJwFoFkdAhJVzzd1uBXV9lChoBmgJaA9DCAbzV8hcSVxAlIaUUpRoFU3oA2gWR0CEvINSZSeidX2UKGgGaAloD0MIflaZKS1UYkCUhpRSlGgVTegDaBZHQIS9w+6iCat1fZQoaAZoCWgPQwgEATJ07KhOQJSGlFKUaBVN6ANoFkdAhMAC4axX4nV9lChoBmgJaA9DCLtkHCPZ7FZAlIaUUpRoFU3oA2gWR0CExa8yN4qxdX2UKGgGaAloD0MIgBDJkGPrKMCUhpRSlGgVTegDaBZHQITUyHfuTid1fZQoaAZoCWgPQwjww0FClGNLQJSGlFKUaBVN6ANoFkdAhNn1hCtzS3V9lChoBmgJaA9DCM76lGMymWBAlIaUUpRoFU3oA2gWR0CE4UNtqHoHdX2UKGgGaAloD0MIYDyDhn4PYkCUhpRSlGgVTegDaBZHQITx0lE7W/d1fZQoaAZoCWgPQwjMBwQ6k7JeQJSGlFKUaBVN6ANoFkdAhPY4bCJoCnV9lChoBmgJaA9DCCsXKv9aklZAlIaUUpRoFU3oA2gWR0CFCHLt/nW8dX2UKGgGaAloD0MIQRGLGHauXkCUhpRSlGgVTegDaBZHQIUOYEMb3oN1fZQoaAZoCWgPQwixhovc0zpjQJSGlFKUaBVN6ANoFkdAhR/Bz3h4uHV9lChoBmgJaA9DCOnWa3rQp2BAlIaUUpRoFU3oA2gWR0CFMuxDb8FZdX2UKGgGaAloD0MI2bERiNekXkCUhpRSlGgVTegDaBZHQIU6xIQOFxp1fZQoaAZoCWgPQwiWsgxxrGRfQJSGlFKUaBVN6ANoFkdAhT6ao/A0sXV9lChoBmgJaA9DCGlznNuEYFVAlIaUUpRoFU3oA2gWR0CFR4hC+lCUdX2UKGgGaAloD0MIBi/6ClIYZUCUhpRSlGgVTegDaBZHQIVJTCk43m51fZQoaAZoCWgPQwgDCB9KtHBWQJSGlFKUaBVN6ANoFkdAhUqGdy1eB3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.1", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (245 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 123.83883288266108, "std_reward": 87.23583866701928, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-30T12:30:12.495633"}
|