FabioDataGeek commited on
Commit
a22d108
1 Parent(s): abdafb8

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1170.79 +/- 97.80
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0975681541c63f3eba20636dd6551d9582d1c82b2a7522f24ecef372b576e664
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc7da30a310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc7da30a3a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc7da30a430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc7da30a4c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc7da30a550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc7da30a5e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc7da30a670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc7da30a700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc7da30a790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc7da30a820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc7da30a8b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc7da30a940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fc7da307690>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677664113193224631,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIxcDD08LBu+PUIAP2nodD+yhTS/B/P6PuruX745m4C/mSG0PH+fIL/JNDC/0CccPxRidr/7cMQ/P2oHP18GeD9uvXa/y3cfQKt6Jz/dm5Q/Yudqv3OVrL7LGoo/VVP8PnjJ07+ErKY+i8kCP1uTZj9OEjK/YAXOvk8cxj4wMvu+hg3Hvsc4hL/VBH2+IncpP0LTY77QiMq/FvFOv9/kCL2LxAO+J8eLv180CT49Byo/V9Zhv+hHnr7t2Ku8qRlBQAz/Yr5qadu/hhMrvjrCRT6zuBo/hKymPovJAj8oHY6/YYnxvAbsH79wJXQ+rrMYvkaAIL9aJBE/Vd4Ov/q+B7/Y0F6/ILNLP89Arj44EFM+OppkP+kTWT8wBjo/CSzxPCb5Fj7l6Dg+rGO8vYWVnT0RkhA/IdibPR9oKD/rOA4/s7gaP4Sspj6LyQI/KB2Ov/q4+76XBUi/O6bVPe2Lqz5PagC/IvHEP1iwHr8XyqK9fQudv1M44D4OMF2+L6IHP7cDSr2tRzM/83U4P+ZF8L7G108/FJu/vpbdU76GSO+9Y5ZqvwVCkD/mbsM+7ZHSPbO4Gj+ErKY+i8kCPygdjr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB+zQ02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8+ybvQAAAAA6G9q/AAAAAMtYf70AAAAANbTfPwAAAADAMwU+AAAAAMcC+j8AAAAAsTFLPQAAAAD8zwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DvStQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHx+q7sAAAAAWAncvwAAAADjtMW9AAAAAHCi7D8AAAAAGomDPQAAAAC3NPg/AAAAADt1LT0AAAAA1RzqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALbGYjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBo5JG9AAAAAFjE478AAAAASmf/vQAAAAB7oPw/AAAAAI4F/j0AAAAAXifePwAAAABVh5m9AAAAAOxs978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/kDy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsoGkPQAAAADktO2/AAAAAHDLfjwAAAAAFe0AQAAAAABSmGy8AAAAAGgO5z8AAAAASSE2PQAAAAAT6OS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJWZsM+eOGWMAWyUTegDjAF0lEdAsCgR08vEj3V9lChoBkdAmAQQvYe1bGgHTegDaAhHQLApdGdI5HV1fZQoaAZHQJFyk/UvwmVoB03oA2gIR0CwK1Q+UyHmdX2UKGgGR0CVXiaNuLrHaAdN6ANoCEdAsCurfdhy83V9lChoBkdAkge1LSNOumgHTegDaAhHQLAusjfek591fZQoaAZHQJOXITZg5R1oB03oA2gIR0CwMB0p3HJcdX2UKGgGR0CTcWZ4wAU+aAdN6ANoCEdAsDJClFc6eXV9lChoBkdAkvCTUutfX2gHTegDaAhHQLAyy8O09hZ1fZQoaAZHQI7kw4OtnwpoB03oA2gIR0CwN0fqxC6ZdX2UKGgGR0CCGpfF72L6aAdN6ANoCEdAsDi/k6tDD3V9lChoBkdAkgJ8eCCjDmgHTegDaAhHQLA6qYVZcLV1fZQoaAZHQJNCjYFqzqtoB03oA2gIR0CwOv8WweNldX2UKGgGR0CRdbz2OAAiaAdN6ANoCEdAsD4A25xzaXV9lChoBkdAk9dcs6JZXGgHTegDaAhHQLA/bR64Uex1fZQoaAZHQJOqwGs3hn9oB03oA2gIR0CwQZcer+5wdX2UKGgGR0CV1APu5SWJaAdN6ANoCEdAsEIYJRfnfXV9lChoBkdAkOGUbcXWOWgHTegDaAhHQLBGbOq//Nt1fZQoaAZHQJBXCjTKDChoB03oA2gIR0CwR9P+wTufdX2UKGgGR0CQBI1He7+UaAdN6ANoCEdAsEm3/ffoBHV9lChoBkdAk0vNL6DXe2gHTegDaAhHQLBKDwyZa3Z1fZQoaAZHQJPp4qTbFjxoB03oA2gIR0CwTSSHymQ9dX2UKGgGR0CYSMFo+OfeaAdN6ANoCEdAsE6L9P1tf3V9lChoBkdAlHDazu4PPWgHTegDaAhHQLBQxU+LWI51fZQoaAZHQJcR5RKpT/BoB03oA2gIR0CwUUX2ugYhdX2UKGgGR0CQfC+PBBRiaAdN6ANoCEdAsFWZIWgvlHV9lChoBkdAkX9//JeVs2gHTegDaAhHQLBXDUXYUWV1fZQoaAZHQJMSG8BdUsFoB03oA2gIR0CwWQVDOTq0dX2UKGgGR0CQiD7nxJ/YaAdN6ANoCEdAsFle2rn1WnV9lChoBkdAkOBQfdRBNWgHTegDaAhHQLBccBreqJd1fZQoaAZHQJL7xbjcVQBoB03oA2gIR0CwXdsrNGExdX2UKGgGR0CQ5DI5HVgAaAdN6ANoCEdAsGA8Y0l7dHV9lChoBkdAlPmcvh60IGgHTegDaAhHQLBgvq33HrB1fZQoaAZHQJP8nKJVKf5oB03oA2gIR0CwZQ3bRF7VdX2UKGgGR0CTyw9ehPCVaAdN6ANoCEdAsGZ4hdMTOHV9lChoBkdAkxoEVrRBvGgHTegDaAhHQLBoXeCCjDd1fZQoaAZHQJNwFHI6r/9oB03oA2gIR0CwaLS7CiyqdX2UKGgGR0CVnM8twrDqaAdN6ANoCEdAsGuzJwKjSHV9lChoBkdAlTNnMUypJmgHTegDaAhHQLBtGvn8sMB1fZQoaAZHQJXfOCYkVvdoB03oA2gIR0Cwb3uTmnwYdX2UKGgGR0CAaT2xptaZaAdN6ANoCEdAsHAAQxveg3V9lChoBkdAlH6zjzZpSWgHTegDaAhHQLB0XYNy5qd1fZQoaAZHQJC3mkLx7RhoB03oA2gIR0Cwdc4hpxm1dX2UKGgGR0CS2kVxCIDYaAdN6ANoCEdAsHe1KSPluHV9lChoBkdAkZn7CN0eVGgHTegDaAhHQLB4DVSXMQp1fZQoaAZHQJQq6hf0EoxoB03oA2gIR0CwexUkv9LpdX2UKGgGR0CUqPvzOHFhaAdN6ANoCEdAsHyD+wTufHV9lChoBkdAkZs9i2DxsmgHTegDaAhHQLB+8ViWmgt1fZQoaAZHQJSHXkWAPNFoB03oA2gIR0Cwf3Qqy4WldX2UKGgGR0CTkZcc2itaaAdN6ANoCEdAsIONYRujynV9lChoBkdAlOdhmK64D2gHTegDaAhHQLCE90IToMd1fZQoaAZHQJIfP9UCJXRoB03oA2gIR0CwhtpZSvTxdX2UKGgGR0CSyav3JxNqaAdN6ANoCEdAsIcwW69TP3V9lChoBkdAk+fkngHeJ2gHTegDaAhHQLCKPOh0yQB1fZQoaAZHQJSt1NmDlHVoB03oA2gIR0Cwi6Y9xIatdX2UKGgGR0CUqz+717IDaAdN6ANoCEdAsI4YfNiYs3V9lChoBkdAlOZ64tpVTGgHTegDaAhHQLCOmUcn3L51fZQoaAZHQJEACD8LropoB03oA2gIR0CwksTynUDudX2UKGgGR0CVa5iyY5T7aAdN6ANoCEdAsJQ2XY150XV9lChoBkdAk8MMFEAo5WgHTegDaAhHQLCWJ/yGzrx1fZQoaAZHQJNa1+gDifhoB03oA2gIR0Cwln9rsSkCdX2UKGgGR0CSYfLuQZGbaAdN6ANoCEdAsJmL5DZ13nV9lChoBkdAlDdMlPacqmgHTegDaAhHQLCbASfUWmB1fZQoaAZHQJQSj668QI5oB03oA2gIR0CwnbZBX0XhdX2UKGgGR0CTyVHYYixFaAdN6ANoCEdAsJ4+aKDTSnV9lChoBkdAlCvchC+lCWgHTegDaAhHQLCiPXzUZvV1fZQoaAZHQJU3lwZOzppoB03oA2gIR0Cwo7QjMV1wdX2UKGgGR0CS96wCKaXsaAdN6ANoCEdAsKWST4cm0HV9lChoBkdAlOgoiC8OC2gHTegDaAhHQLCl6yCFsYV1fZQoaAZHQIuCVilSCOFoB03oA2gIR0CwqO6RyOrAdX2UKGgGR0CRbrKqn3tbaAdN6ANoCEdAsKpci6g/T3V9lChoBkdAk6ObGza9K2gHTegDaAhHQLCtCGA08/51fZQoaAZHQJbrBh8YyftoB03oA2gIR0CwrZSsS00FdX2UKGgGR0CV00r0J4SpaAdN6ANoCEdAsLGL+S8rZ3V9lChoBkdAkyn/oFFDv2gHTegDaAhHQLCy/KzRhMJ1fZQoaAZHQJYeF7JGOMloB03oA2gIR0CwtPPKQq7RdX2UKGgGR0CWSUhDgIhRaAdN6ANoCEdAsLVMvkBCD3V9lChoBkdAlLdgJLM9sGgHTegDaAhHQLC4UQKrq+t1fZQoaAZHQJEDSH446wNoB03oA2gIR0CwucIEbHZLdX2UKGgGR0CSXNWqLjxTaAdN6ANoCEdAsLyB+BpYcXV9lChoBkdAlLxazeGfw2gHTegDaAhHQLC9DMoMKCx1fZQoaAZHQI5nkbWEsatoB03oA2gIR0CwwMg22oegdX2UKGgGR0CVl6pXp4bCaAdN6ANoCEdAsMIx66asqHV9lChoBkdAlJ/TZpSJj2gHTegDaAhHQLDEHisny/d1fZQoaAZHQJds9JPIn0FoB03oA2gIR0CwxHawpvxZdX2UKGgGR0CUeMOafBepaAdN6ANoCEdAsMdzVYp2EHV9lChoBkdAllZEDyOJcmgHTegDaAhHQLDI3JhfBvd1fZQoaAZHQJVdu7xusLhoB03oA2gIR0Cwy5oS6DoRdX2UKGgGR0CWEGAn2IweaAdN6ANoCEdAsMwg5imVJXV9lChoBkdAlwnTKHO8kGgHTegDaAhHQLDP9CPIXCV1fZQoaAZHQJRCY+t8uz1oB03oA2gIR0Cw0V7v5P/JdX2UKGgGR0CWWuIhQm/naAdN6ANoCEdAsNNIlolD4XV9lChoBkdAktDS1Vo6CGgHTegDaAhHQLDTn/tIClt1fZQoaAZHQJMfdAVwgkloB03oA2gIR0Cw1qeuRs/IdX2UKGgGR0CRtwxhDw6RaAdN6ANoCEdAsNgcfU4JeHV9lChoBkdAlKBohQm/nGgHTegDaAhHQLDa/EVWS2Z1fZQoaAZHQJSH54C6pYNoB03oA2gIR0Cw24U1VHWjdX2UKGgGR0CSk8FERaouaAdN6ANoCEdAsN8xaX8fm3V9lChoBkdAlyXIphF3IWgHTegDaAhHQLDgnBBAv+R1fZQoaAZHQJNAKJfpljFoB03oA2gIR0Cw4osSkCV9dX2UKGgGR0CXWdklNUOvaAdN6ANoCEdAsOLimO2iL3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ccdc615b9efa7717c7e7acbdf7d67f36b2c086179df5095466eed28f05a5c2f
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2b3dcffc1a46c2262fb401bd31d2dff7ec02b9a1a2e4e7d9157fa29a15d58d4
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc7da30a310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc7da30a3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc7da30a430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc7da30a4c0>", "_build": "<function ActorCriticPolicy._build at 0x7fc7da30a550>", "forward": "<function ActorCriticPolicy.forward at 0x7fc7da30a5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc7da30a670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc7da30a700>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc7da30a790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc7da30a820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc7da30a8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc7da30a940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc7da307690>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677664113193224631, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIxcDD08LBu+PUIAP2nodD+yhTS/B/P6PuruX745m4C/mSG0PH+fIL/JNDC/0CccPxRidr/7cMQ/P2oHP18GeD9uvXa/y3cfQKt6Jz/dm5Q/Yudqv3OVrL7LGoo/VVP8PnjJ07+ErKY+i8kCP1uTZj9OEjK/YAXOvk8cxj4wMvu+hg3Hvsc4hL/VBH2+IncpP0LTY77QiMq/FvFOv9/kCL2LxAO+J8eLv180CT49Byo/V9Zhv+hHnr7t2Ku8qRlBQAz/Yr5qadu/hhMrvjrCRT6zuBo/hKymPovJAj8oHY6/YYnxvAbsH79wJXQ+rrMYvkaAIL9aJBE/Vd4Ov/q+B7/Y0F6/ILNLP89Arj44EFM+OppkP+kTWT8wBjo/CSzxPCb5Fj7l6Dg+rGO8vYWVnT0RkhA/IdibPR9oKD/rOA4/s7gaP4Sspj6LyQI/KB2Ov/q4+76XBUi/O6bVPe2Lqz5PagC/IvHEP1iwHr8XyqK9fQudv1M44D4OMF2+L6IHP7cDSr2tRzM/83U4P+ZF8L7G108/FJu/vpbdU76GSO+9Y5ZqvwVCkD/mbsM+7ZHSPbO4Gj+ErKY+i8kCPygdjr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB+zQ02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8+ybvQAAAAA6G9q/AAAAAMtYf70AAAAANbTfPwAAAADAMwU+AAAAAMcC+j8AAAAAsTFLPQAAAAD8zwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DvStQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHx+q7sAAAAAWAncvwAAAADjtMW9AAAAAHCi7D8AAAAAGomDPQAAAAC3NPg/AAAAADt1LT0AAAAA1RzqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALbGYjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBo5JG9AAAAAFjE478AAAAASmf/vQAAAAB7oPw/AAAAAI4F/j0AAAAAXifePwAAAABVh5m9AAAAAOxs978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC/kDy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsoGkPQAAAADktO2/AAAAAHDLfjwAAAAAFe0AQAAAAABSmGy8AAAAAGgO5z8AAAAASSE2PQAAAAAT6OS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJWZsM+eOGWMAWyUTegDjAF0lEdAsCgR08vEj3V9lChoBkdAmAQQvYe1bGgHTegDaAhHQLApdGdI5HV1fZQoaAZHQJFyk/UvwmVoB03oA2gIR0CwK1Q+UyHmdX2UKGgGR0CVXiaNuLrHaAdN6ANoCEdAsCurfdhy83V9lChoBkdAkge1LSNOumgHTegDaAhHQLAusjfek591fZQoaAZHQJOXITZg5R1oB03oA2gIR0CwMB0p3HJcdX2UKGgGR0CTcWZ4wAU+aAdN6ANoCEdAsDJClFc6eXV9lChoBkdAkvCTUutfX2gHTegDaAhHQLAyy8O09hZ1fZQoaAZHQI7kw4OtnwpoB03oA2gIR0CwN0fqxC6ZdX2UKGgGR0CCGpfF72L6aAdN6ANoCEdAsDi/k6tDD3V9lChoBkdAkgJ8eCCjDmgHTegDaAhHQLA6qYVZcLV1fZQoaAZHQJNCjYFqzqtoB03oA2gIR0CwOv8WweNldX2UKGgGR0CRdbz2OAAiaAdN6ANoCEdAsD4A25xzaXV9lChoBkdAk9dcs6JZXGgHTegDaAhHQLA/bR64Uex1fZQoaAZHQJOqwGs3hn9oB03oA2gIR0CwQZcer+5wdX2UKGgGR0CV1APu5SWJaAdN6ANoCEdAsEIYJRfnfXV9lChoBkdAkOGUbcXWOWgHTegDaAhHQLBGbOq//Nt1fZQoaAZHQJBXCjTKDChoB03oA2gIR0CwR9P+wTufdX2UKGgGR0CQBI1He7+UaAdN6ANoCEdAsEm3/ffoBHV9lChoBkdAk0vNL6DXe2gHTegDaAhHQLBKDwyZa3Z1fZQoaAZHQJPp4qTbFjxoB03oA2gIR0CwTSSHymQ9dX2UKGgGR0CYSMFo+OfeaAdN6ANoCEdAsE6L9P1tf3V9lChoBkdAlHDazu4PPWgHTegDaAhHQLBQxU+LWI51fZQoaAZHQJcR5RKpT/BoB03oA2gIR0CwUUX2ugYhdX2UKGgGR0CQfC+PBBRiaAdN6ANoCEdAsFWZIWgvlHV9lChoBkdAkX9//JeVs2gHTegDaAhHQLBXDUXYUWV1fZQoaAZHQJMSG8BdUsFoB03oA2gIR0CwWQVDOTq0dX2UKGgGR0CQiD7nxJ/YaAdN6ANoCEdAsFle2rn1WnV9lChoBkdAkOBQfdRBNWgHTegDaAhHQLBccBreqJd1fZQoaAZHQJL7xbjcVQBoB03oA2gIR0CwXdsrNGExdX2UKGgGR0CQ5DI5HVgAaAdN6ANoCEdAsGA8Y0l7dHV9lChoBkdAlPmcvh60IGgHTegDaAhHQLBgvq33HrB1fZQoaAZHQJP8nKJVKf5oB03oA2gIR0CwZQ3bRF7VdX2UKGgGR0CTyw9ehPCVaAdN6ANoCEdAsGZ4hdMTOHV9lChoBkdAkxoEVrRBvGgHTegDaAhHQLBoXeCCjDd1fZQoaAZHQJNwFHI6r/9oB03oA2gIR0CwaLS7CiyqdX2UKGgGR0CVnM8twrDqaAdN6ANoCEdAsGuzJwKjSHV9lChoBkdAlTNnMUypJmgHTegDaAhHQLBtGvn8sMB1fZQoaAZHQJXfOCYkVvdoB03oA2gIR0Cwb3uTmnwYdX2UKGgGR0CAaT2xptaZaAdN6ANoCEdAsHAAQxveg3V9lChoBkdAlH6zjzZpSWgHTegDaAhHQLB0XYNy5qd1fZQoaAZHQJC3mkLx7RhoB03oA2gIR0Cwdc4hpxm1dX2UKGgGR0CS2kVxCIDYaAdN6ANoCEdAsHe1KSPluHV9lChoBkdAkZn7CN0eVGgHTegDaAhHQLB4DVSXMQp1fZQoaAZHQJQq6hf0EoxoB03oA2gIR0CwexUkv9LpdX2UKGgGR0CUqPvzOHFhaAdN6ANoCEdAsHyD+wTufHV9lChoBkdAkZs9i2DxsmgHTegDaAhHQLB+8ViWmgt1fZQoaAZHQJSHXkWAPNFoB03oA2gIR0Cwf3Qqy4WldX2UKGgGR0CTkZcc2itaaAdN6ANoCEdAsIONYRujynV9lChoBkdAlOdhmK64D2gHTegDaAhHQLCE90IToMd1fZQoaAZHQJIfP9UCJXRoB03oA2gIR0CwhtpZSvTxdX2UKGgGR0CSyav3JxNqaAdN6ANoCEdAsIcwW69TP3V9lChoBkdAk+fkngHeJ2gHTegDaAhHQLCKPOh0yQB1fZQoaAZHQJSt1NmDlHVoB03oA2gIR0Cwi6Y9xIatdX2UKGgGR0CUqz+717IDaAdN6ANoCEdAsI4YfNiYs3V9lChoBkdAlOZ64tpVTGgHTegDaAhHQLCOmUcn3L51fZQoaAZHQJEACD8LropoB03oA2gIR0CwksTynUDudX2UKGgGR0CVa5iyY5T7aAdN6ANoCEdAsJQ2XY150XV9lChoBkdAk8MMFEAo5WgHTegDaAhHQLCWJ/yGzrx1fZQoaAZHQJNa1+gDifhoB03oA2gIR0Cwln9rsSkCdX2UKGgGR0CSYfLuQZGbaAdN6ANoCEdAsJmL5DZ13nV9lChoBkdAlDdMlPacqmgHTegDaAhHQLCbASfUWmB1fZQoaAZHQJQSj668QI5oB03oA2gIR0CwnbZBX0XhdX2UKGgGR0CTyVHYYixFaAdN6ANoCEdAsJ4+aKDTSnV9lChoBkdAlCvchC+lCWgHTegDaAhHQLCiPXzUZvV1fZQoaAZHQJU3lwZOzppoB03oA2gIR0Cwo7QjMV1wdX2UKGgGR0CS96wCKaXsaAdN6ANoCEdAsKWST4cm0HV9lChoBkdAlOgoiC8OC2gHTegDaAhHQLCl6yCFsYV1fZQoaAZHQIuCVilSCOFoB03oA2gIR0CwqO6RyOrAdX2UKGgGR0CRbrKqn3tbaAdN6ANoCEdAsKpci6g/T3V9lChoBkdAk6ObGza9K2gHTegDaAhHQLCtCGA08/51fZQoaAZHQJbrBh8YyftoB03oA2gIR0CwrZSsS00FdX2UKGgGR0CV00r0J4SpaAdN6ANoCEdAsLGL+S8rZ3V9lChoBkdAkyn/oFFDv2gHTegDaAhHQLCy/KzRhMJ1fZQoaAZHQJYeF7JGOMloB03oA2gIR0CwtPPKQq7RdX2UKGgGR0CWSUhDgIhRaAdN6ANoCEdAsLVMvkBCD3V9lChoBkdAlLdgJLM9sGgHTegDaAhHQLC4UQKrq+t1fZQoaAZHQJEDSH446wNoB03oA2gIR0CwucIEbHZLdX2UKGgGR0CSXNWqLjxTaAdN6ANoCEdAsLyB+BpYcXV9lChoBkdAlLxazeGfw2gHTegDaAhHQLC9DMoMKCx1fZQoaAZHQI5nkbWEsatoB03oA2gIR0CwwMg22oegdX2UKGgGR0CVl6pXp4bCaAdN6ANoCEdAsMIx66asqHV9lChoBkdAlJ/TZpSJj2gHTegDaAhHQLDEHisny/d1fZQoaAZHQJds9JPIn0FoB03oA2gIR0CwxHawpvxZdX2UKGgGR0CUeMOafBepaAdN6ANoCEdAsMdzVYp2EHV9lChoBkdAllZEDyOJcmgHTegDaAhHQLDI3JhfBvd1fZQoaAZHQJVdu7xusLhoB03oA2gIR0Cwy5oS6DoRdX2UKGgGR0CWEGAn2IweaAdN6ANoCEdAsMwg5imVJXV9lChoBkdAlwnTKHO8kGgHTegDaAhHQLDP9CPIXCV1fZQoaAZHQJRCY+t8uz1oB03oA2gIR0Cw0V7v5P/JdX2UKGgGR0CWWuIhQm/naAdN6ANoCEdAsNNIlolD4XV9lChoBkdAktDS1Vo6CGgHTegDaAhHQLDTn/tIClt1fZQoaAZHQJMfdAVwgkloB03oA2gIR0Cw1qeuRs/IdX2UKGgGR0CRtwxhDw6RaAdN6ANoCEdAsNgcfU4JeHV9lChoBkdAlKBohQm/nGgHTegDaAhHQLDa/EVWS2Z1fZQoaAZHQJSH54C6pYNoB03oA2gIR0Cw24U1VHWjdX2UKGgGR0CSk8FERaouaAdN6ANoCEdAsN8xaX8fm3V9lChoBkdAlyXIphF3IWgHTegDaAhHQLDgnBBAv+R1fZQoaAZHQJNAKJfpljFoB03oA2gIR0Cw4osSkCV9dX2UKGgGR0CXWdklNUOvaAdN6ANoCEdAsOLimO2iL3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (993 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1170.7854897473997, "std_reward": 97.80340251025892, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-01T10:59:51.049786"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:194e8d5f9c411d42e41b7083a3302180aa2e1f4a9c29a6181c2ffda8d8ca8b4d
3
+ size 2136