FareedKhan commited on
Commit
e52dd87
1 Parent(s): d485f59

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,638 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: TaylorAI/bge-micro-v2
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:1814
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: "\nBased on the provided information, it seems like you are listing\
31
+ \ various substances and the potential side effects associated with them. Here's\
32
+ \ a summary:\n\n**Substances and Related Side Effects:**\n\n1. **Amitriptyline**\n\
33
+ \ - Hyperkeratosis\n - Muscle weakness\n - Abnormal macular morphology\n\
34
+ \ - Visual impairment\n - Anxiety\n - Abnormality of the endocrine system\n\
35
+ \ - Hypothyroidism\n - Inflammatory abnormality of the skin\n - Eczema\n\
36
+ \ - Skin ulcer\n - Erythema\n - Jaundice\n - Hyperhidrosis\n - Blurred\
37
+ \ vision\n - Abnormality of extrapyramidal motor function\n - Hepatic steatosis\n\
38
+ \ - Increased body weight\n - Arrhythmia\n - Supraventricular arrhythmia\n\
39
+ \ - Congestive heart failure\n - Abnormality of blood and blood-forming tissues\n\
40
+ \ - Thrombocytopenia\n - Renal insufficiency\n - Fever\n - Hypoglycemia\n\
41
+ \ - Dehydration\n - Pain\n - Esophageal stenosis\n - Gait disturbance\n\
42
+ \ "
43
+ sentences:
44
+ - Can you provide me with a list of medications that could cause loss of appetite
45
+ and a smooth tongue sensation as side effects?
46
+ - What are the secondary diseases related to breast cancer characterized by gene
47
+ expression changes associated with genomic variations affecting cell growth and
48
+ division, and present symptoms like pain, fatigue, breathing problems, vomiting,
49
+ changes in bowel movements, and wasting, particularly during treatment?
50
+ - Which drugs targeting the dopamine transporter encoded by SLC6A3 gene are approved
51
+ for managing Major Depressive Disorder, Generalized Anxiety Disorder, neuropathic
52
+ pain, osteoarthritis, and stress urinary incontinence?
53
+ - source_sentence: '
54
+
55
+ Alvespimycin, a derivative of Geldanamycin and a Heat Shock Protein 90 (HSP90)
56
+ inhibitor, falls under the drug category on DrugBank. It encompasses Amides, HSP90
57
+ Heat-Shock Proteins, Lactams, and Quinones. This compound is currently under investigation
58
+ for its antineoplastic potential in treating solid tumors, advanced solid tumors,
59
+ or acute myeloid leukemia. Alvespimycin''s typical half-life spans from 9.9 to
60
+ 54.1 hours, with a median duration of 18.2 hours, making it a longer-acting drug
61
+ in its pharmacodynamics profile. Alvespimycin functions by inhibiting HSP90, which
62
+ consequently disrupts the correct folding and function of oncoproteins derived
63
+ from HSP90 client proteins, a critical role in cellular proliferation, and apoptosis
64
+ suppression. The medication targets oncogenic kinases like BRAF, inducing their
65
+ proteasomal degradation and facilitating depletion of oncoproteins. Notably, Alvespimycin
66
+ shows a minimal degree of protein binding and is more selective in its effect
67
+ on tumors compared to normal tissues. The drug also aids in increasing the potency
68
+ of telomerase inhibition by imetelstat, as demonstrated in pre-clinical models
69
+ of human osteosarcoma.'
70
+ sentences:
71
+ - Could you give me a list of medications that interact with the HSP90AA1 gene or
72
+ protein and have a metabolic half-life ranging from 9.9 to 54.1 hours?
73
+ - Which diseases are categorized as forerunners or variations of benign cervical
74
+ tumors in current medical classifications?
75
+ - Can you give me an overview of diseases related to SLC13A5 gene abnormalities
76
+ that involve dysregulation of enzyme activity?
77
+ - source_sentence: '
78
+
79
+ The gene DRAXIN, also known by various aliases such as ''AGPA3119'', ''C1orf187'',
80
+ ''UNQ3119'', and ''neucrin'', is located on chromosome 1 in the genomic region
81
+ defined by its start position at 11691710 and end position at 11725857. DRAXIN,
82
+ classified as "dorsal inhibitory axon guidance protein", is predicted to play
83
+ a role in the inhibition of the canonical Wnt signaling pathway, negative regulation
84
+ of neuron projection development, and nervous system development. It is also indicated
85
+ to be active in the extracellular region.
86
+
87
+
88
+ Studies have revealed that this protein interacts with another gene (NTN1) and
89
+ is associated with a range of diseases including Parkinson disease, juvenile onset
90
+ Parkinson disease 19A, early-onset parkinsonism-intellectual disability syndrome,
91
+ parkinsonian-pyramidal syndrome, X-linked parkinsonism-spasticity syndrome, hemiparkinsonism-hemiatrophy
92
+ syndrome, atypical juvenile parkinsonism, and hereditary late onset Parkinson
93
+ disease. It is involved across various biological processes such as Wnt signaling
94
+ pathway, negative regulation of the canonical Wnt pathway, negative regulation
95
+ of axon extension, and negative regulation of neuron apoptotic process. DRAXIN
96
+ is known to have expression in numerous anatomical entities like blood, prefrontal
97
+ cortex, female reproductive system, brain, cerebral cortex, uterus, endometrium,
98
+ frontal cortex, temporal lobe, amygdala, forebrain, neocortex, Ammon''s horn,
99
+ cerebellum, cerebellar cortex, and dorsolateral prefrontal cortex; however, its
100
+ expression is absent in colonic mucosa, quadriceps femoris, vastus lateralis,
101
+ deltoid, biceps'
102
+ sentences:
103
+ - What are the common Alzheimer's treatments that could cause chest discomfort,
104
+ and can you list those with a duration of effect lasting about three days?
105
+ - Which genes or proteins are not expressed in either the small intestinal or colonic
106
+ mucosal tissues?
107
+ - Identify the Y-linked gene associated with spermatogenic failure that's located
108
+ in the Y chromosome's nonrecombining zone and exclusively expressed in testes.
109
+ - source_sentence: '
110
+
111
+ TRMT5, also known by aliases such as COXPD26, KIAA1393, PNSED, and TRM5, is a
112
+ gene encoding the tRNA methyltransferase 5. This enzyme is responsible for methylating
113
+ the N1 position of guanosine-37 (G37) in specific tRNAs using S-adenosyl methionine.
114
+ It plays a role in modifying tRNAs, which contain 13 to 14 nucleotides modified
115
+ posttranscriptionally by nucleotide-specific enzymes (Brule'
116
+ sentences:
117
+ - Which gene or protein is known to interact with the one associated with defective
118
+ ABCB11, which leads to PFIC2 and BRIC2, and plays a regulatory role in the expression
119
+ of genes critical for liver development and functionality?
120
+ - Which genes or proteins are known to interact with tRNA (guanine(37)-N(1))-methyltransferase
121
+ activity?
122
+ - What is the biosynthetic pathway that falls under 'Creation of C4 and C2 activators'
123
+ and also involves the MASP1 gene or its protein product?
124
+ - source_sentence: '
125
+
126
+
127
+ Muscular dystrophy is a group of inherited disorders characterized by progressive
128
+ muscle weakness and wasting. Here''s a concise overview of the information you''ve
129
+ provided:
130
+
131
+
132
+ ### Types of Muscular Dystrophy:
133
+
134
+ - **Duchenne Muscular Dystrophy**: Most common in young boys, characterized by
135
+ severe muscle weakness and consequent inability to walk by adolescence.
136
+
137
+ - **Becker Muscular Dystrophy**: Less severe than Duchenne but still progressive,
138
+ affecting males.
139
+
140
+ - **Facioscapulohumeral Muscular Dystrophy (FSHD)**: Affects the face, shoulder,
141
+ and upper arm muscles, common in the teenage to adult years.
142
+
143
+ - **'
144
+ sentences:
145
+ - Identify a metabolic pathway that is associated with both glyoxylate metabolism
146
+ and glycine degradation and is capable of interacting with a common gene or protein.
147
+ - Which gene/protein belonging to the activator 1 small subunit family is involved
148
+ in interactions with the gene/protein associated with compromised DNA recombination
149
+ inhibition at telomeres resulting from DAXX mutations?
150
+ - I need details on a disease linked to the COL6A2 gene, presenting with progressive
151
+ muscle weakening in specific groups and worsening muscle strength over time.
152
+ model-index:
153
+ - name: SentenceTransformer based on TaylorAI/bge-micro-v2
154
+ results:
155
+ - task:
156
+ type: information-retrieval
157
+ name: Information Retrieval
158
+ dataset:
159
+ name: dim 384
160
+ type: dim_384
161
+ metrics:
162
+ - type: cosine_accuracy@1
163
+ value: 0.41089108910891087
164
+ name: Cosine Accuracy@1
165
+ - type: cosine_accuracy@3
166
+ value: 0.49504950495049505
167
+ name: Cosine Accuracy@3
168
+ - type: cosine_accuracy@5
169
+ value: 0.5346534653465347
170
+ name: Cosine Accuracy@5
171
+ - type: cosine_accuracy@10
172
+ value: 0.5693069306930693
173
+ name: Cosine Accuracy@10
174
+ - type: cosine_precision@1
175
+ value: 0.41089108910891087
176
+ name: Cosine Precision@1
177
+ - type: cosine_precision@3
178
+ value: 0.165016501650165
179
+ name: Cosine Precision@3
180
+ - type: cosine_precision@5
181
+ value: 0.10693069306930691
182
+ name: Cosine Precision@5
183
+ - type: cosine_precision@10
184
+ value: 0.05693069306930693
185
+ name: Cosine Precision@10
186
+ - type: cosine_recall@1
187
+ value: 0.41089108910891087
188
+ name: Cosine Recall@1
189
+ - type: cosine_recall@3
190
+ value: 0.49504950495049505
191
+ name: Cosine Recall@3
192
+ - type: cosine_recall@5
193
+ value: 0.5346534653465347
194
+ name: Cosine Recall@5
195
+ - type: cosine_recall@10
196
+ value: 0.5693069306930693
197
+ name: Cosine Recall@10
198
+ - type: cosine_ndcg@10
199
+ value: 0.48660626760149667
200
+ name: Cosine Ndcg@10
201
+ - type: cosine_mrr@10
202
+ value: 0.46036657237152295
203
+ name: Cosine Mrr@10
204
+ - type: cosine_map@100
205
+ value: 0.4675921280486482
206
+ name: Cosine Map@100
207
+ ---
208
+
209
+ # SentenceTransformer based on TaylorAI/bge-micro-v2
210
+
211
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
212
+
213
+ ## Model Details
214
+
215
+ ### Model Description
216
+ - **Model Type:** Sentence Transformer
217
+ - **Base model:** [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2) <!-- at revision 3edf6d7de0faa426b09780416fe61009f26ae589 -->
218
+ - **Maximum Sequence Length:** 512 tokens
219
+ - **Output Dimensionality:** 384 tokens
220
+ - **Similarity Function:** Cosine Similarity
221
+ - **Training Dataset:**
222
+ - json
223
+ <!-- - **Language:** Unknown -->
224
+ <!-- - **License:** Unknown -->
225
+
226
+ ### Model Sources
227
+
228
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
229
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
230
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
231
+
232
+ ### Full Model Architecture
233
+
234
+ ```
235
+ SentenceTransformer(
236
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
237
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
238
+ )
239
+ ```
240
+
241
+ ## Usage
242
+
243
+ ### Direct Usage (Sentence Transformers)
244
+
245
+ First install the Sentence Transformers library:
246
+
247
+ ```bash
248
+ pip install -U sentence-transformers
249
+ ```
250
+
251
+ Then you can load this model and run inference.
252
+ ```python
253
+ from sentence_transformers import SentenceTransformer
254
+
255
+ # Download from the 🤗 Hub
256
+ model = SentenceTransformer("FareedKhan/TaylorAI_bge-micro-v2_FareedKhan_prime_synthetic_data_2k_10_32")
257
+ # Run inference
258
+ sentences = [
259
+ "\n\nMuscular dystrophy is a group of inherited disorders characterized by progressive muscle weakness and wasting. Here's a concise overview of the information you've provided:\n\n### Types of Muscular Dystrophy:\n- **Duchenne Muscular Dystrophy**: Most common in young boys, characterized by severe muscle weakness and consequent inability to walk by adolescence.\n- **Becker Muscular Dystrophy**: Less severe than Duchenne but still progressive, affecting males.\n- **Facioscapulohumeral Muscular Dystrophy (FSHD)**: Affects the face, shoulder, and upper arm muscles, common in the teenage to adult years.\n- **",
260
+ 'I need details on a disease linked to the COL6A2 gene, presenting with progressive muscle weakening in specific groups and worsening muscle strength over time.',
261
+ 'Identify a metabolic pathway that is associated with both glyoxylate metabolism and glycine degradation and is capable of interacting with a common gene or protein.',
262
+ ]
263
+ embeddings = model.encode(sentences)
264
+ print(embeddings.shape)
265
+ # [3, 384]
266
+
267
+ # Get the similarity scores for the embeddings
268
+ similarities = model.similarity(embeddings, embeddings)
269
+ print(similarities.shape)
270
+ # [3, 3]
271
+ ```
272
+
273
+ <!--
274
+ ### Direct Usage (Transformers)
275
+
276
+ <details><summary>Click to see the direct usage in Transformers</summary>
277
+
278
+ </details>
279
+ -->
280
+
281
+ <!--
282
+ ### Downstream Usage (Sentence Transformers)
283
+
284
+ You can finetune this model on your own dataset.
285
+
286
+ <details><summary>Click to expand</summary>
287
+
288
+ </details>
289
+ -->
290
+
291
+ <!--
292
+ ### Out-of-Scope Use
293
+
294
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
295
+ -->
296
+
297
+ ## Evaluation
298
+
299
+ ### Metrics
300
+
301
+ #### Information Retrieval
302
+ * Dataset: `dim_384`
303
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
304
+
305
+ | Metric | Value |
306
+ |:--------------------|:-----------|
307
+ | cosine_accuracy@1 | 0.4109 |
308
+ | cosine_accuracy@3 | 0.495 |
309
+ | cosine_accuracy@5 | 0.5347 |
310
+ | cosine_accuracy@10 | 0.5693 |
311
+ | cosine_precision@1 | 0.4109 |
312
+ | cosine_precision@3 | 0.165 |
313
+ | cosine_precision@5 | 0.1069 |
314
+ | cosine_precision@10 | 0.0569 |
315
+ | cosine_recall@1 | 0.4109 |
316
+ | cosine_recall@3 | 0.495 |
317
+ | cosine_recall@5 | 0.5347 |
318
+ | cosine_recall@10 | 0.5693 |
319
+ | cosine_ndcg@10 | 0.4866 |
320
+ | cosine_mrr@10 | 0.4604 |
321
+ | **cosine_map@100** | **0.4676** |
322
+
323
+ <!--
324
+ ## Bias, Risks and Limitations
325
+
326
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
327
+ -->
328
+
329
+ <!--
330
+ ### Recommendations
331
+
332
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
333
+ -->
334
+
335
+ ## Training Details
336
+
337
+ ### Training Dataset
338
+
339
+ #### json
340
+
341
+ * Dataset: json
342
+ * Size: 1,814 training samples
343
+ * Columns: <code>positive</code> and <code>anchor</code>
344
+ * Approximate statistics based on the first 1000 samples:
345
+ | | positive | anchor |
346
+ |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
347
+ | type | string | string |
348
+ | details | <ul><li>min: 2 tokens</li><li>mean: 247.16 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 35.28 tokens</li><li>max: 113 tokens</li></ul> |
349
+ * Samples:
350
+ | positive | anchor |
351
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
352
+ | <code><br><br>Hemophilia is an inherited bleeding disorder that occurs when a person's body does not produce enough of certain clotting factors, leading to prolonged bleeding and, in severe cases, spontaneous bleeding into joints and muscles. The disorder is typically associated with mutations in the genes that code for clotting factors VIII (for hemophilia A) and IX (for hemophilia B). It can be categorized based on the specific clotting factor affected and the mode of inheritance.<br><br>### Risk Factors<br>The biggest risk factor for hemophilia is a family history of the disorder. If a family member, particularly a parent or a close relative, has hemophilia, there is an increased risk for the disease due to the genetic predisposition.<br><br>### Genetic Inheritance<br>- **Hemophilia A (Severe)** or **Factor VIII deficiency**: Often affects males due to the inheritance pattern X-linked recessive. A carrier female has a 50% chance of passing the gene to each of her offspring.<br>- **Hemophilia B (Severe)** or **Factor IX deficiency**: Also typically X-linked recessive, mostly affecting males. Carrier females are likely to pass the gene to their male offspring only.<br><br>### Complications and Symptoms<br>- **Abnormal bleeding**: This is the most common symptom, ranging from mild to life-threatening.<br>- **Subcutaneous hemorrhage and intracranial hemorrhage**: These can lead to serious complications and require immediate medical attention.<br>- **Joint damage**: Frequent bleeding into joints can result in arthritis, joint destruction, and limitation of joint mobility.<br>- **Gastrointestinal, genitourinary, and epistaxis**: These are other sites where bleeding can occur, often with minor trauma.<br><br>### Treatment and Management<br>Treatment for hemophilia often involves replacing the missing clotting factors using infused or transfused factors. This can be through Factor VIII concentrate for hemophilia A or Factor IX concentrate for hemophilia B. Prophylactic treatments are often administered to prevent bleeding episodes and maintain normal joint function.<br><br>### Diagnosis<br>Diagnosis of hemophilia is typically made through a series of blood tests to measure clotting times and factor levels. Genetic testing is also recommended in families with a history of hemophilia to identify carriers and those with more severe symptoms.<br><br>### See a Doctor<br>It's important to see a doctor if you or your child shows signs of prolonged bleeding or if there is a family history of hemophilia. Early diagnosis and appropriate treatment can significantly improve outcomes and quality of life.<br><br>### Carrying and Symptoms in Female Carriers<br>While female carriers are usually asymptomatic, they can experience mild symptoms under specific circumstances such as during pregnancy (gastrointestinal bleeding) or menopause (menorrhagia). Genetic testing can confirm an asymptomatic carrier status, which is important for family planning and counseling.<br><br>### In Conclusion<br>Hemophilia is a complex condition that requires careful management to prevent complications and maintain quality of life. Early diagnosis, genetic counseling, and proper treatment are crucial for managing this inherited bleeding disorder effectively.</code> | <code>Which condition should be avoided when prescribing medications for outdated forms of contact dermatitis resulting from poison oak exposure?</code> |
353
+ | <code><br><br>Assistant: Diabetes insipidus, a rare but serious condition, can manifest with a series of symptoms and has diverse impacts on various systems of the body. Primarily characterized by increased thirst, significant urination, and dehydration, diabetes insipidus requires prompt medical intervention.<br><br>**Symptoms and Impacts**:<br>1. **Polydipsia** (increased thirst) and **polyuria** (frequent urination) are the primary symptoms, typically exceeding 10 liters of fluid intake and urine output per day.<br>2. **Dehydration** can result from excessive fluid loss unless compensated, causing electrolyte</code> | <code>What medical condition could I have that involves persistent thirst, frequent urination, and unexplained weight loss, and is associated with a familial disorder affecting water balance similar to diabetes insipidus, but not identical, as it involves an inability to concentrate urine? My father has it, and my doctor suggested managing salt intake and water consumption, mentioning that medication may be available to reduce the urination. What is the name of this disease?</code> |
354
+ | <code><br><br>The pathway described in this document is titled "p75 NTR receptor-mediated signalling" which suggests that it centers around the activity of the p75 neurotrophin receptor (p75 NTR), a cell surface receptor that plays a crucial role in neuronal development, survival, and function. <br><br>### Key Components and Their Roles:<br><br>- **Neurotrophin (NGF or Nerve Growth Factor)**: This is a ligand that binds to the p75 NTR. Binding of NGF to p75 NTR initiates a cascade of events resulting in various cellular responses.<br><br>- **p75 NTR**: The receptor itself is pivotal, as its binding with ligands like NGF modulates signal transduction in cells, affecting survival, differentiation, and various aspects of cellular metabolism and function.<br><br>- **Sphingomyelinase (SMPD2)**: This gene/protein is implicated in the pathway, with involvement in modulating ceramide production upon NGF Binding to p75 NTR. Sphingomyelinase is activated by the NGF:p75NTR complex, suggesting an integral role in the effector phase of the signaling cascade.<br><br>- **Ceramide**: A lipid derived from sphingomyelin that plays a key role in cellular signaling. Ceramide's production upon ligand-receptor binding can lead to either cell survival or apoptosis depending on the context within specific cell types.<br><br>- **JNK (c-Jun N-terminal kinase)**: This is a serine/threonine kinase that can be activated by ceramide and is involved in various cellular processes including apoptosis, cell cycle regulation, and differentiation.<br><br>### Pathway Description:<br><br>The pathway described includes mechanisms by which ligand binding to p75 NTR leads to ceramide production, which in</code> | <code>Which signaling pathway interacts with both p75 NTR receptor signaling and the nerve growth factor (NGF) gene/protein in a hierarchical manner?</code> |
355
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
356
+ ```json
357
+ {
358
+ "loss": "MultipleNegativesRankingLoss",
359
+ "matryoshka_dims": [
360
+ 384
361
+ ],
362
+ "matryoshka_weights": [
363
+ 1
364
+ ],
365
+ "n_dims_per_step": -1
366
+ }
367
+ ```
368
+
369
+ ### Training Hyperparameters
370
+ #### Non-Default Hyperparameters
371
+
372
+ - `eval_strategy`: epoch
373
+ - `per_device_train_batch_size`: 32
374
+ - `learning_rate`: 1e-05
375
+ - `num_train_epochs`: 10
376
+ - `warmup_ratio`: 0.1
377
+ - `bf16`: True
378
+ - `tf32`: False
379
+ - `load_best_model_at_end`: True
380
+
381
+ #### All Hyperparameters
382
+ <details><summary>Click to expand</summary>
383
+
384
+ - `overwrite_output_dir`: False
385
+ - `do_predict`: False
386
+ - `eval_strategy`: epoch
387
+ - `prediction_loss_only`: True
388
+ - `per_device_train_batch_size`: 32
389
+ - `per_device_eval_batch_size`: 8
390
+ - `per_gpu_train_batch_size`: None
391
+ - `per_gpu_eval_batch_size`: None
392
+ - `gradient_accumulation_steps`: 1
393
+ - `eval_accumulation_steps`: None
394
+ - `torch_empty_cache_steps`: None
395
+ - `learning_rate`: 1e-05
396
+ - `weight_decay`: 0.0
397
+ - `adam_beta1`: 0.9
398
+ - `adam_beta2`: 0.999
399
+ - `adam_epsilon`: 1e-08
400
+ - `max_grad_norm`: 1.0
401
+ - `num_train_epochs`: 10
402
+ - `max_steps`: -1
403
+ - `lr_scheduler_type`: linear
404
+ - `lr_scheduler_kwargs`: {}
405
+ - `warmup_ratio`: 0.1
406
+ - `warmup_steps`: 0
407
+ - `log_level`: passive
408
+ - `log_level_replica`: warning
409
+ - `log_on_each_node`: True
410
+ - `logging_nan_inf_filter`: True
411
+ - `save_safetensors`: True
412
+ - `save_on_each_node`: False
413
+ - `save_only_model`: False
414
+ - `restore_callback_states_from_checkpoint`: False
415
+ - `no_cuda`: False
416
+ - `use_cpu`: False
417
+ - `use_mps_device`: False
418
+ - `seed`: 42
419
+ - `data_seed`: None
420
+ - `jit_mode_eval`: False
421
+ - `use_ipex`: False
422
+ - `bf16`: True
423
+ - `fp16`: False
424
+ - `fp16_opt_level`: O1
425
+ - `half_precision_backend`: auto
426
+ - `bf16_full_eval`: False
427
+ - `fp16_full_eval`: False
428
+ - `tf32`: False
429
+ - `local_rank`: 0
430
+ - `ddp_backend`: None
431
+ - `tpu_num_cores`: None
432
+ - `tpu_metrics_debug`: False
433
+ - `debug`: []
434
+ - `dataloader_drop_last`: False
435
+ - `dataloader_num_workers`: 0
436
+ - `dataloader_prefetch_factor`: None
437
+ - `past_index`: -1
438
+ - `disable_tqdm`: False
439
+ - `remove_unused_columns`: True
440
+ - `label_names`: None
441
+ - `load_best_model_at_end`: True
442
+ - `ignore_data_skip`: False
443
+ - `fsdp`: []
444
+ - `fsdp_min_num_params`: 0
445
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
446
+ - `fsdp_transformer_layer_cls_to_wrap`: None
447
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
448
+ - `deepspeed`: None
449
+ - `label_smoothing_factor`: 0.0
450
+ - `optim`: adamw_torch
451
+ - `optim_args`: None
452
+ - `adafactor`: False
453
+ - `group_by_length`: False
454
+ - `length_column_name`: length
455
+ - `ddp_find_unused_parameters`: None
456
+ - `ddp_bucket_cap_mb`: None
457
+ - `ddp_broadcast_buffers`: False
458
+ - `dataloader_pin_memory`: True
459
+ - `dataloader_persistent_workers`: False
460
+ - `skip_memory_metrics`: True
461
+ - `use_legacy_prediction_loop`: False
462
+ - `push_to_hub`: False
463
+ - `resume_from_checkpoint`: None
464
+ - `hub_model_id`: None
465
+ - `hub_strategy`: every_save
466
+ - `hub_private_repo`: False
467
+ - `hub_always_push`: False
468
+ - `gradient_checkpointing`: False
469
+ - `gradient_checkpointing_kwargs`: None
470
+ - `include_inputs_for_metrics`: False
471
+ - `eval_do_concat_batches`: True
472
+ - `fp16_backend`: auto
473
+ - `push_to_hub_model_id`: None
474
+ - `push_to_hub_organization`: None
475
+ - `mp_parameters`:
476
+ - `auto_find_batch_size`: False
477
+ - `full_determinism`: False
478
+ - `torchdynamo`: None
479
+ - `ray_scope`: last
480
+ - `ddp_timeout`: 1800
481
+ - `torch_compile`: False
482
+ - `torch_compile_backend`: None
483
+ - `torch_compile_mode`: None
484
+ - `dispatch_batches`: None
485
+ - `split_batches`: None
486
+ - `include_tokens_per_second`: False
487
+ - `include_num_input_tokens_seen`: False
488
+ - `neftune_noise_alpha`: None
489
+ - `optim_target_modules`: None
490
+ - `batch_eval_metrics`: False
491
+ - `eval_on_start`: False
492
+ - `use_liger_kernel`: False
493
+ - `eval_use_gather_object`: False
494
+ - `batch_sampler`: batch_sampler
495
+ - `multi_dataset_batch_sampler`: proportional
496
+
497
+ </details>
498
+
499
+ ### Training Logs
500
+ | Epoch | Step | Training Loss | dim_384_cosine_map@100 |
501
+ |:-------:|:-------:|:-------------:|:----------------------:|
502
+ | 0 | 0 | - | 0.4238 |
503
+ | 0.1754 | 10 | 1.9916 | - |
504
+ | 0.3509 | 20 | 1.8049 | - |
505
+ | 0.5263 | 30 | 1.8366 | - |
506
+ | 0.7018 | 40 | 1.8585 | - |
507
+ | 0.8772 | 50 | 1.7288 | - |
508
+ | 1.0 | 57 | - | 0.4326 |
509
+ | 1.0526 | 60 | 1.6438 | - |
510
+ | 1.2281 | 70 | 1.5404 | - |
511
+ | 1.4035 | 80 | 1.6168 | - |
512
+ | 1.5789 | 90 | 1.5432 | - |
513
+ | 1.7544 | 100 | 1.4976 | - |
514
+ | 1.9298 | 110 | 1.5275 | - |
515
+ | 2.0 | 114 | - | 0.4422 |
516
+ | 2.1053 | 120 | 1.3276 | - |
517
+ | 2.2807 | 130 | 1.3629 | - |
518
+ | 2.4561 | 140 | 1.4108 | - |
519
+ | 2.6316 | 150 | 1.3338 | - |
520
+ | 2.8070 | 160 | 1.4043 | - |
521
+ | 2.9825 | 170 | 1.4664 | - |
522
+ | 3.0 | 171 | - | 0.4487 |
523
+ | 3.1579 | 180 | 1.2225 | - |
524
+ | 3.3333 | 190 | 1.2557 | - |
525
+ | 3.5088 | 200 | 1.3518 | - |
526
+ | 3.6842 | 210 | 1.3227 | - |
527
+ | 3.8596 | 220 | 1.3391 | - |
528
+ | 4.0 | 228 | - | 0.4561 |
529
+ | 4.0351 | 230 | 1.2035 | - |
530
+ | 4.2105 | 240 | 1.197 | - |
531
+ | 4.3860 | 250 | 1.2908 | - |
532
+ | 4.5614 | 260 | 1.1738 | - |
533
+ | 4.7368 | 270 | 1.1855 | - |
534
+ | 4.9123 | 280 | 1.2118 | - |
535
+ | 5.0 | 285 | - | 0.4578 |
536
+ | 5.0877 | 290 | 1.1835 | - |
537
+ | 5.2632 | 300 | 1.1624 | - |
538
+ | 5.4386 | 310 | 1.2075 | - |
539
+ | 5.6140 | 320 | 1.1771 | - |
540
+ | 5.7895 | 330 | 1.0814 | - |
541
+ | 5.9649 | 340 | 1.2039 | - |
542
+ | **6.0** | **342** | **-** | **0.4584** |
543
+ | 6.1404 | 350 | 1.2029 | - |
544
+ | 6.3158 | 360 | 1.1043 | - |
545
+ | 6.4912 | 370 | 1.2011 | - |
546
+ | 6.6667 | 380 | 1.0401 | - |
547
+ | 6.8421 | 390 | 1.0732 | - |
548
+ | 7.0 | 399 | - | 0.4624 |
549
+ | 7.0175 | 400 | 1.1137 | - |
550
+ | 7.1930 | 410 | 1.0946 | - |
551
+ | 7.3684 | 420 | 1.1581 | - |
552
+ | 7.5439 | 430 | 1.0605 | - |
553
+ | 7.7193 | 440 | 1.076 | - |
554
+ | 7.8947 | 450 | 1.2689 | - |
555
+ | 8.0 | 456 | - | 0.4680 |
556
+ | 8.0702 | 460 | 1.0004 | - |
557
+ | 8.2456 | 470 | 1.1387 | - |
558
+ | 8.4211 | 480 | 1.0652 | - |
559
+ | 8.5965 | 490 | 1.0879 | - |
560
+ | 8.7719 | 500 | 1.1845 | - |
561
+ | 8.9474 | 510 | 1.0979 | - |
562
+ | 9.0 | 513 | - | 0.4684 |
563
+ | 9.1228 | 520 | 1.0588 | - |
564
+ | 9.2982 | 530 | 1.2412 | - |
565
+ | 9.4737 | 540 | 1.0261 | - |
566
+ | 9.6491 | 550 | 1.0919 | - |
567
+ | 9.8246 | 560 | 1.129 | - |
568
+ | 10.0 | 570 | 1.0425 | 0.4676 |
569
+
570
+ * The bold row denotes the saved checkpoint.
571
+
572
+ ### Framework Versions
573
+ - Python: 3.10.10
574
+ - Sentence Transformers: 3.1.1
575
+ - Transformers: 4.45.1
576
+ - PyTorch: 2.2.1+cu121
577
+ - Accelerate: 0.34.2
578
+ - Datasets: 3.0.1
579
+ - Tokenizers: 0.20.0
580
+
581
+ ## Citation
582
+
583
+ ### BibTeX
584
+
585
+ #### Sentence Transformers
586
+ ```bibtex
587
+ @inproceedings{reimers-2019-sentence-bert,
588
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
589
+ author = "Reimers, Nils and Gurevych, Iryna",
590
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
591
+ month = "11",
592
+ year = "2019",
593
+ publisher = "Association for Computational Linguistics",
594
+ url = "https://arxiv.org/abs/1908.10084",
595
+ }
596
+ ```
597
+
598
+ #### MatryoshkaLoss
599
+ ```bibtex
600
+ @misc{kusupati2024matryoshka,
601
+ title={Matryoshka Representation Learning},
602
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
603
+ year={2024},
604
+ eprint={2205.13147},
605
+ archivePrefix={arXiv},
606
+ primaryClass={cs.LG}
607
+ }
608
+ ```
609
+
610
+ #### MultipleNegativesRankingLoss
611
+ ```bibtex
612
+ @misc{henderson2017efficient,
613
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
614
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
615
+ year={2017},
616
+ eprint={1705.00652},
617
+ archivePrefix={arXiv},
618
+ primaryClass={cs.CL}
619
+ }
620
+ ```
621
+
622
+ <!--
623
+ ## Glossary
624
+
625
+ *Clearly define terms in order to be accessible across audiences.*
626
+ -->
627
+
628
+ <!--
629
+ ## Model Card Authors
630
+
631
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
632
+ -->
633
+
634
+ <!--
635
+ ## Model Card Contact
636
+
637
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
638
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/teamspace/studios/this_studio/TaylorAI_bge-micro-v2_FareedKhan_prime_synthetic_data_2k_10_32/finetuned_model",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 3,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.45.1",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.1",
5
+ "pytorch": "2.2.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df950749ef018610be40f0963b766652b4c856c53c62951170b469d9c0e27f14
3
+ size 69565312
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "[PAD]",
4
+ "[UNK]",
5
+ "[CLS]",
6
+ "[SEP]",
7
+ "[MASK]"
8
+ ],
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "mask_token": {
17
+ "content": "[MASK]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "pad_token": {
24
+ "content": "[PAD]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "sep_token": {
31
+ "content": "[SEP]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "unk_token": {
38
+ "content": "[UNK]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ }
44
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [
45
+ "[PAD]",
46
+ "[UNK]",
47
+ "[CLS]",
48
+ "[SEP]",
49
+ "[MASK]"
50
+ ],
51
+ "clean_up_tokenization_spaces": true,
52
+ "cls_token": "[CLS]",
53
+ "do_basic_tokenize": true,
54
+ "do_lower_case": true,
55
+ "mask_token": "[MASK]",
56
+ "max_length": 512,
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "pad_to_multiple_of": null,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_type_id": 0,
62
+ "padding_side": "right",
63
+ "sep_token": "[SEP]",
64
+ "stride": 0,
65
+ "strip_accents": null,
66
+ "tokenize_chinese_chars": true,
67
+ "tokenizer_class": "BertTokenizer",
68
+ "truncation_side": "right",
69
+ "truncation_strategy": "longest_first",
70
+ "unk_token": "[UNK]"
71
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff