--- language: - en tags: - generated_from_trainer base_model: openai/whisper-small datasets: - QEC metrics: - wer model-index: - name: whisper-small-quartr results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Quartr Earnings Calls type: QEC args: 'config: en, split: test' metrics: - type: wer value: 32.834424695977546 name: Wer --- # whisper-small-quartr This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Quartr Earnings Calls dataset. It achieves the following results on the evaluation set: - Loss: 0.6429 - Wer: 32.8344 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8.120528078446462e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 84 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6771 | 0.32 | 100 | 0.6577 | 25.7437 | | 0.6533 | 0.64 | 200 | 0.6025 | 34.6804 | | 0.5793 | 0.96 | 300 | 0.5784 | 24.3530 | | 0.3872 | 1.28 | 400 | 0.5856 | 32.9592 | | 0.4447 | 1.61 | 500 | 0.5646 | 23.2429 | | 0.414 | 1.93 | 600 | 0.5616 | 70.7016 | | 0.2489 | 2.25 | 700 | 0.5816 | 35.2666 | | 0.2863 | 2.57 | 800 | 0.5853 | 24.7583 | | 0.2698 | 2.89 | 900 | 0.5844 | 32.7409 | | 0.1646 | 3.21 | 1000 | 0.6182 | 27.7892 | | 0.174 | 3.53 | 1100 | 0.6228 | 36.2021 | | 0.2021 | 3.85 | 1200 | 0.6269 | 35.9775 | | 0.2239 | 4.17 | 1300 | 0.6367 | 35.2666 | | 0.1551 | 4.49 | 1400 | 0.6420 | 32.4478 | | 0.1351 | 4.82 | 1500 | 0.6429 | 32.8344 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.1.dev0 - Tokenizers 0.15.2