FatihC's picture
update model card README.md
a3f9e4a
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat-people
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: images
          split: train
          args: images
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.952

swin-tiny-patch4-window7-224-finetuned-eurosat-people

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1711
  • Accuracy: 0.952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 4 0.3073 0.912
No log 2.0 8 0.2076 0.92
0.4055 3.0 12 0.1789 0.928
0.4055 4.0 16 0.1911 0.928
0.3045 5.0 20 0.1695 0.928
0.3045 6.0 24 0.1756 0.944
0.3045 7.0 28 0.1751 0.944
0.2419 8.0 32 0.1727 0.944
0.2419 9.0 36 0.1711 0.952
0.2375 10.0 40 0.1711 0.952

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3