FelipePasquevich commited on
Commit
b4db7e3
1 Parent(s): 9d8f0f1

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.59 +/- 27.94
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f17e1dc3280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f17e1dc3310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f17e1dc33a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f17e1dc3430>", "_build": "<function ActorCriticPolicy._build at 0x7f17e1dc34c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f17e1dc3550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f17e1dc35e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f17e1dc3670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f17e1dc3700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f17e1dc3790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f17e1dc3820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f17e1dc38b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f17e1dbd8d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677786587792187512, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2U+Dy4cuK74H9hvR9ZJT1DWyw9DqkHvgAAgD8AAIA/Jr6yPduQhbxASyU9d1wjPUeO7L2I4/49AACAPwAAgD+NRi6+4ffxPh9sTD51r4a+B+uSvMPZm7wAAAAAAAAAAC2QRj7bPLo+ZG0IvR9Vnb6AQ+s9QPXpOwAAAAAAAAAAM9MGulyDZLoejBU169oNLzvhnDie4mu0AACAPwAAgD/6mho+3N2NPlZETL42Np6+2bWZvFhnsrwAAAAAAAAAAGaLirxIuYY7QaIvPpjjBb4Mai89rd73vgAAAAAAAIA/zXOaPCXClD83NLo7xn/qvoO4+zxwcn68AAAAAAAAAADipJW+4dILP6A22j5HfI6+oQE/vH433j0AAAAAAAAAALOXHT3hjKa6PHgwPMUeozwwICE8m82MvQAAgD8AAIA/AOYnPRQklbq4HMg1dycSMH5oWzlyX/q0AACAPwAAgD+z4ie9ABSKPpuI7T2NvEO+bcQsPFY9Wz0AAAAAAAAAAM2nkb1doaU+sx1LPlzBm75FWKg9rVSQPQAAAAAAAAAAM/szvGK+rj8a10i+aTHrvnIAA7yqMPa9AAAAAAAAAADNJI87e1qLushImrkXwpK0m50pukFTszgAAIA/AACAP5rTAby2q0m8FLAUPNx/6b0Merc94D/BPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIS3LAruYPcECUhpRSlIwBbJRNJQGMAXSUR0CWeeeAuqWDdX2UKGgGaAloD0MITmN7Lej3cECUhpRSlGgVTRwBaBZHQJZ6BzXBgu11fZQoaAZoCWgPQwi8ytqmeMxEQJSGlFKUaBVL32gWR0CWehKc/dIodX2UKGgGaAloD0MItU/HY4Y8b0CUhpRSlGgVTSsBaBZHQJZ6K1fE4vN1fZQoaAZoCWgPQwgdqinJep9wQJSGlFKUaBVNKgFoFkdAlnpIMBp5/3V9lChoBmgJaA9DCGR0QBK2fnFAlIaUUpRoFU0WAWgWR0CWemIcR15jdX2UKGgGaAloD0MIfA3BcRmCbkCUhpRSlGgVTQwBaBZHQJZ8sG7jDKp1fZQoaAZoCWgPQwhNLsbAOnBwQJSGlFKUaBVNHQFoFkdAln1L5RCQcXV9lChoBmgJaA9DCBrc1hbet3FAlIaUUpRoFUv/aBZHQJZ+XEcbR4R1fZQoaAZoCWgPQwjImpFBbp9wQJSGlFKUaBVNIAFoFkdAln9KQ/5cknV9lChoBmgJaA9DCDJxqyAGxG5AlIaUUpRoFU0WAWgWR0CWf+7SApazdX2UKGgGaAloD0MIIqtbPae+bUCUhpRSlGgVTQcBaBZHQJaAE8HObAl1fZQoaAZoCWgPQwgCoIobN5RtQJSGlFKUaBVNIgFoFkdAloC3LvCuU3V9lChoBmgJaA9DCJ7Swfo/snFAlIaUUpRoFU0nAWgWR0CWgZamGdqddX2UKGgGaAloD0MI5llJK75YcECUhpRSlGgVTRABaBZHQJaCF0yP+4t1fZQoaAZoCWgPQwivl6YIcC9xQJSGlFKUaBVNBAFoFkdAloIfoePq93V9lChoBmgJaA9DCNmwprKo82xAlIaUUpRoFU0fAWgWR0CWgrMUypJgdX2UKGgGaAloD0MItahPcsfVcUCUhpRSlGgVTSoBaBZHQJaCwqbz9TB1fZQoaAZoCWgPQwigpSvYRmJvQJSGlFKUaBVNGQFoFkdAloLdwNsnA3V9lChoBmgJaA9DCE/ltKdkiHFAlIaUUpRoFU0wAWgWR0CWgzvqTr3TdX2UKGgGaAloD0MIi06WWq8PckCUhpRSlGgVTT8BaBZHQJaDfZDiOvN1fZQoaAZoCWgPQwjgEKrUbOVwQJSGlFKUaBVNJAFoFkdAloZrPdEb53V9lChoBmgJaA9DCNdLUwQ4WHFAlIaUUpRoFU06AWgWR0CWhnw2VE/jdX2UKGgGaAloD0MI+rZgqS67bUCUhpRSlGgVS/1oFkdAlognpjc2znV9lChoBmgJaA9DCN2adFvidXBAlIaUUpRoFU1GAWgWR0CWiYlIVdondX2UKGgGaAloD0MIroODvQleb0CUhpRSlGgVTUMBaBZHQJaK239aUzN1fZQoaAZoCWgPQwgXgbG+wT9xQJSGlFKUaBVNIQFoFkdAlos3eWOZLXV9lChoBmgJaA9DCFVrYRZa7HBAlIaUUpRoFUv3aBZHQJaMLJYDDCR1fZQoaAZoCWgPQwiyRj1EI5FtQJSGlFKUaBVNGwFoFkdAloxGkvboKXV9lChoBmgJaA9DCEGADB17pnBAlIaUUpRoFU1XAWgWR0CWjOdTHbRGdX2UKGgGaAloD0MIGsQHdjx/ckCUhpRSlGgVTQsBaBZHQJaNXvphWo51fZQoaAZoCWgPQwglsaTc/f9wQJSGlFKUaBVNNAFoFkdAlo4MMd92HXV9lChoBmgJaA9DCE3Z6Qc1UXJAlIaUUpRoFU03AWgWR0CWjjllsguAdX2UKGgGaAloD0MI9mBSfHyxbkCUhpRSlGgVTSUBaBZHQJaOXnbItDl1fZQoaAZoCWgPQwifOetTzkNyQJSGlFKUaBVNCQFoFkdAlo5muxKQJXV9lChoBmgJaA9DCJimCHD6tW9AlIaUUpRoFU0xAWgWR0CWj2gsbvPUdX2UKGgGaAloD0MIkszqHW4/YUCUhpRSlGgVTegDaBZHQJaRanAIpph1fZQoaAZoCWgPQwhvDWyVYJEawJSGlFKUaBVL3GgWR0CWkeGQCCBgdX2UKGgGaAloD0MIjUEnhI5hckCUhpRSlGgVTQgBaBZHQJaSFPKuB+Z1fZQoaAZoCWgPQwifVWZKq3hzQJSGlFKUaBVNIAFoFkdAlpLw/C66KHV9lChoBmgJaA9DCHB4QURqG25AlIaUUpRoFU0RAWgWR0CWlS6PKdQPdX2UKGgGaAloD0MIx3+BIMBic0CUhpRSlGgVTSMBaBZHQJaXRyfcvdx1fZQoaAZoCWgPQwjuW60TV4RwQJSGlFKUaBVNGwFoFkdAlquVG5MDfXV9lChoBmgJaA9DCACPqFDd8XFAlIaUUpRoFU0dAWgWR0CWrCuVHFxXdX2UKGgGaAloD0MIwmwCDAvycECUhpRSlGgVTU8BaBZHQJastMj/uLJ1fZQoaAZoCWgPQwgLDFndavhuQJSGlFKUaBVNFgFoFkdAlq0PdAPd23V9lChoBmgJaA9DCDqQ9dQqFXJAlIaUUpRoFU1KAWgWR0CWrTI2wV0tdX2UKGgGaAloD0MIFOgTeZLPb0CUhpRSlGgVTRkBaBZHQJatMVafSQZ1fZQoaAZoCWgPQwhb0eY4txlCQJSGlFKUaBVLxGgWR0CWrW225QP7dX2UKGgGaAloD0MIJ/p8lBFZcECUhpRSlGgVTQ8BaBZHQJatxHJ9y951fZQoaAZoCWgPQwjr/xzmy9lvQJSGlFKUaBVNRQFoFkdAlq3NX1anrXV9lChoBmgJaA9DCA7Y1eTpWXFAlIaUUpRoFU05AWgWR0CWreEsasIWdX2UKGgGaAloD0MIE36pnzdNckCUhpRSlGgVTR4BaBZHQJaveplz2ex1fZQoaAZoCWgPQwglsg+yLCRFQJSGlFKUaBVLw2gWR0CWsK8KXv6TdX2UKGgGaAloD0MIP47myEpibUCUhpRSlGgVTT4BaBZHQJaw1K3/gix1fZQoaAZoCWgPQwjo9LwbC+5SQJSGlFKUaBVL0WgWR0CWsaqKP4mDdX2UKGgGaAloD0MI2pHqOz8GckCUhpRSlGgVTUsBaBZHQJax2e7L+xZ1fZQoaAZoCWgPQwjp7c9FQ8RuQJSGlFKUaBVNGgFoFkdAlrH6GlANX3V9lChoBmgJaA9DCNWXpZ2aLlNAlIaUUpRoFUuyaBZHQJayq7mMfih1fZQoaAZoCWgPQwgEyxEykF1IQJSGlFKUaBVL2WgWR0CWs/e4kNWmdX2UKGgGaAloD0MIVMa/z7hEb0CUhpRSlGgVTRcCaBZHQJa0YWCVbA11fZQoaAZoCWgPQwifdvhrsudwQJSGlFKUaBVNHQFoFkdAlrSVRHf/FXV9lChoBmgJaA9DCEq3JXJBZnFAlIaUUpRoFU0LAWgWR0CWtOu9vjwQdX2UKGgGaAloD0MIzQLtDinJb0CUhpRSlGgVTQsBaBZHQJa1ppaiblR1fZQoaAZoCWgPQwipbFhTWV5wQJSGlFKUaBVNMQFoFkdAlrXzgQ6IWXV9lChoBmgJaA9DCHtoHyv4OXBAlIaUUpRoFU1HAWgWR0CWtvBqKxcFdX2UKGgGaAloD0MImfOMfUkQckCUhpRSlGgVTVMBaBZHQJa3EWvbGm11fZQoaAZoCWgPQwgEV3kCISZyQJSGlFKUaBVNCgFoFkdAlrd1IZqEe3V9lChoBmgJaA9DCNpWs874snFAlIaUUpRoFU0IAWgWR0CWuMW+oLofdX2UKGgGaAloD0MIxEFClG+KckCUhpRSlGgVTSUBaBZHQJa5gDB/I811fZQoaAZoCWgPQwi6ERYVcZpwQJSGlFKUaBVNCAFoFkdAlrmoyTINmXV9lChoBmgJaA9DCJupEI/EBnFAlIaUUpRoFU0EAWgWR0CWubsJ6Y3OdX2UKGgGaAloD0MILNUFvIy1cECUhpRSlGgVTQcBaBZHQJa57zvqkdp1fZQoaAZoCWgPQwhCJ4QOuiNwQJSGlFKUaBVNzgFoFkdAlro5vHcUNHV9lChoBmgJaA9DCNwODYtRiUxAlIaUUpRoFUvMaBZHQJa61X+2mYV1fZQoaAZoCWgPQwj9SufDs/VtQJSGlFKUaBVNDQFoFkdAlrvkPDpC8nV9lChoBmgJaA9DCCPajqm7s3FAlIaUUpRoFU1MAWgWR0CWvJdAxBVudX2UKGgGaAloD0MIm49rQ4WncUCUhpRSlGgVTSoBaBZHQJa9IhTwUg11fZQoaAZoCWgPQwhVTntKzottQJSGlFKUaBVNJgFoFkdAlr0yb6P8ynV9lChoBmgJaA9DCD7MXrYdg29AlIaUUpRoFU0HAWgWR0CWvZHJtBOYdX2UKGgGaAloD0MI5gMCnUlnS0CUhpRSlGgVS+ZoFkdAlr20pZwGW3V9lChoBmgJaA9DCMakv5dCBHBAlIaUUpRoFU0dAWgWR0CWveA2ycCpdX2UKGgGaAloD0MIO6buyq4JckCUhpRSlGgVTRUBaBZHQJa/RrftQbd1fZQoaAZoCWgPQwhH5pE/2IlwQJSGlFKUaBVNLQFoFkdAlr+KRQrMDHV9lChoBmgJaA9DCGEyVTAqyG9AlIaUUpRoFU0WAWgWR0CWwUtwJgLJdX2UKGgGaAloD0MIAfbRqSu/SECUhpRSlGgVS+doFkdAlsFi++M6zXV9lChoBmgJaA9DCBSvsrYpYnFAlIaUUpRoFU0UAWgWR0CWwmlp48lpdX2UKGgGaAloD0MInfLoRhhwcECUhpRSlGgVTSoBaBZHQJbDdamoBJZ1fZQoaAZoCWgPQwgddt8xfPFxQJSGlFKUaBVNNgFoFkdAlsOvaDf3vnV9lChoBmgJaA9DCJDaxMm9d3BAlIaUUpRoFU0HAWgWR0CWw7vTPSlWdX2UKGgGaAloD0MIiljEsIOYcECUhpRSlGgVTTgBaBZHQJbEVWCEpRZ1fZQoaAZoCWgPQwjfwyXHndhuQJSGlFKUaBVNDAFoFkdAlsVLTc6/7HV9lChoBmgJaA9DCNU/iGSI0nFAlIaUUpRoFU0OAWgWR0CWxl7KaG5+dX2UKGgGaAloD0MIeXO4Vvsfb0CUhpRSlGgVTQgBaBZHQJbG4xfv4M51fZQoaAZoCWgPQwjayHVTSmZxQJSGlFKUaBVL+GgWR0CWx2KUFB6bdX2UKGgGaAloD0MIuoJtxJNEbUCUhpRSlGgVTQkBaBZHQJbHlV5rxiJ1fZQoaAZoCWgPQwhoke18P2ByQJSGlFKUaBVNIwFoFkdAlsgP9P1tf3V9lChoBmgJaA9DCE1lUdjFlmtAlIaUUpRoFU0lAWgWR0CWyNqfvnbJdX2UKGgGaAloD0MI6rEtA04obkCUhpRSlGgVTSsBaBZHQJbMONn5BTp1fZQoaAZoCWgPQwgAj6hQXe1xQJSGlFKUaBVNSAFoFkdAls1sO9WZJHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99aab69598b8a42d61f35ef8bbfe2871f648ce5030cef07b489d63fe8c893ff5
3
+ size 147408
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f17e1dc3280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f17e1dc3310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f17e1dc33a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f17e1dc3430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f17e1dc34c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f17e1dc3550>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f17e1dc35e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f17e1dc3670>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f17e1dc3700>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f17e1dc3790>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f17e1dc3820>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f17e1dc38b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f17e1dbd8d0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677786587792187512,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2U+Dy4cuK74H9hvR9ZJT1DWyw9DqkHvgAAgD8AAIA/Jr6yPduQhbxASyU9d1wjPUeO7L2I4/49AACAPwAAgD+NRi6+4ffxPh9sTD51r4a+B+uSvMPZm7wAAAAAAAAAAC2QRj7bPLo+ZG0IvR9Vnb6AQ+s9QPXpOwAAAAAAAAAAM9MGulyDZLoejBU169oNLzvhnDie4mu0AACAPwAAgD/6mho+3N2NPlZETL42Np6+2bWZvFhnsrwAAAAAAAAAAGaLirxIuYY7QaIvPpjjBb4Mai89rd73vgAAAAAAAIA/zXOaPCXClD83NLo7xn/qvoO4+zxwcn68AAAAAAAAAADipJW+4dILP6A22j5HfI6+oQE/vH433j0AAAAAAAAAALOXHT3hjKa6PHgwPMUeozwwICE8m82MvQAAgD8AAIA/AOYnPRQklbq4HMg1dycSMH5oWzlyX/q0AACAPwAAgD+z4ie9ABSKPpuI7T2NvEO+bcQsPFY9Wz0AAAAAAAAAAM2nkb1doaU+sx1LPlzBm75FWKg9rVSQPQAAAAAAAAAAM/szvGK+rj8a10i+aTHrvnIAA7yqMPa9AAAAAAAAAADNJI87e1qLushImrkXwpK0m50pukFTszgAAIA/AACAP5rTAby2q0m8FLAUPNx/6b0Merc94D/BPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIS3LAruYPcECUhpRSlIwBbJRNJQGMAXSUR0CWeeeAuqWDdX2UKGgGaAloD0MITmN7Lej3cECUhpRSlGgVTRwBaBZHQJZ6BzXBgu11fZQoaAZoCWgPQwi8ytqmeMxEQJSGlFKUaBVL32gWR0CWehKc/dIodX2UKGgGaAloD0MItU/HY4Y8b0CUhpRSlGgVTSsBaBZHQJZ6K1fE4vN1fZQoaAZoCWgPQwgdqinJep9wQJSGlFKUaBVNKgFoFkdAlnpIMBp5/3V9lChoBmgJaA9DCGR0QBK2fnFAlIaUUpRoFU0WAWgWR0CWemIcR15jdX2UKGgGaAloD0MIfA3BcRmCbkCUhpRSlGgVTQwBaBZHQJZ8sG7jDKp1fZQoaAZoCWgPQwhNLsbAOnBwQJSGlFKUaBVNHQFoFkdAln1L5RCQcXV9lChoBmgJaA9DCBrc1hbet3FAlIaUUpRoFUv/aBZHQJZ+XEcbR4R1fZQoaAZoCWgPQwjImpFBbp9wQJSGlFKUaBVNIAFoFkdAln9KQ/5cknV9lChoBmgJaA9DCDJxqyAGxG5AlIaUUpRoFU0WAWgWR0CWf+7SApazdX2UKGgGaAloD0MIIqtbPae+bUCUhpRSlGgVTQcBaBZHQJaAE8HObAl1fZQoaAZoCWgPQwgCoIobN5RtQJSGlFKUaBVNIgFoFkdAloC3LvCuU3V9lChoBmgJaA9DCJ7Swfo/snFAlIaUUpRoFU0nAWgWR0CWgZamGdqddX2UKGgGaAloD0MI5llJK75YcECUhpRSlGgVTRABaBZHQJaCF0yP+4t1fZQoaAZoCWgPQwivl6YIcC9xQJSGlFKUaBVNBAFoFkdAloIfoePq93V9lChoBmgJaA9DCNmwprKo82xAlIaUUpRoFU0fAWgWR0CWgrMUypJgdX2UKGgGaAloD0MItahPcsfVcUCUhpRSlGgVTSoBaBZHQJaCwqbz9TB1fZQoaAZoCWgPQwigpSvYRmJvQJSGlFKUaBVNGQFoFkdAloLdwNsnA3V9lChoBmgJaA9DCE/ltKdkiHFAlIaUUpRoFU0wAWgWR0CWgzvqTr3TdX2UKGgGaAloD0MIi06WWq8PckCUhpRSlGgVTT8BaBZHQJaDfZDiOvN1fZQoaAZoCWgPQwjgEKrUbOVwQJSGlFKUaBVNJAFoFkdAloZrPdEb53V9lChoBmgJaA9DCNdLUwQ4WHFAlIaUUpRoFU06AWgWR0CWhnw2VE/jdX2UKGgGaAloD0MI+rZgqS67bUCUhpRSlGgVS/1oFkdAlognpjc2znV9lChoBmgJaA9DCN2adFvidXBAlIaUUpRoFU1GAWgWR0CWiYlIVdondX2UKGgGaAloD0MIroODvQleb0CUhpRSlGgVTUMBaBZHQJaK239aUzN1fZQoaAZoCWgPQwgXgbG+wT9xQJSGlFKUaBVNIQFoFkdAlos3eWOZLXV9lChoBmgJaA9DCFVrYRZa7HBAlIaUUpRoFUv3aBZHQJaMLJYDDCR1fZQoaAZoCWgPQwiyRj1EI5FtQJSGlFKUaBVNGwFoFkdAloxGkvboKXV9lChoBmgJaA9DCEGADB17pnBAlIaUUpRoFU1XAWgWR0CWjOdTHbRGdX2UKGgGaAloD0MIGsQHdjx/ckCUhpRSlGgVTQsBaBZHQJaNXvphWo51fZQoaAZoCWgPQwglsaTc/f9wQJSGlFKUaBVNNAFoFkdAlo4MMd92HXV9lChoBmgJaA9DCE3Z6Qc1UXJAlIaUUpRoFU03AWgWR0CWjjllsguAdX2UKGgGaAloD0MI9mBSfHyxbkCUhpRSlGgVTSUBaBZHQJaOXnbItDl1fZQoaAZoCWgPQwifOetTzkNyQJSGlFKUaBVNCQFoFkdAlo5muxKQJXV9lChoBmgJaA9DCJimCHD6tW9AlIaUUpRoFU0xAWgWR0CWj2gsbvPUdX2UKGgGaAloD0MIkszqHW4/YUCUhpRSlGgVTegDaBZHQJaRanAIpph1fZQoaAZoCWgPQwhvDWyVYJEawJSGlFKUaBVL3GgWR0CWkeGQCCBgdX2UKGgGaAloD0MIjUEnhI5hckCUhpRSlGgVTQgBaBZHQJaSFPKuB+Z1fZQoaAZoCWgPQwifVWZKq3hzQJSGlFKUaBVNIAFoFkdAlpLw/C66KHV9lChoBmgJaA9DCHB4QURqG25AlIaUUpRoFU0RAWgWR0CWlS6PKdQPdX2UKGgGaAloD0MIx3+BIMBic0CUhpRSlGgVTSMBaBZHQJaXRyfcvdx1fZQoaAZoCWgPQwjuW60TV4RwQJSGlFKUaBVNGwFoFkdAlquVG5MDfXV9lChoBmgJaA9DCACPqFDd8XFAlIaUUpRoFU0dAWgWR0CWrCuVHFxXdX2UKGgGaAloD0MIwmwCDAvycECUhpRSlGgVTU8BaBZHQJastMj/uLJ1fZQoaAZoCWgPQwgLDFndavhuQJSGlFKUaBVNFgFoFkdAlq0PdAPd23V9lChoBmgJaA9DCDqQ9dQqFXJAlIaUUpRoFU1KAWgWR0CWrTI2wV0tdX2UKGgGaAloD0MIFOgTeZLPb0CUhpRSlGgVTRkBaBZHQJatMVafSQZ1fZQoaAZoCWgPQwhb0eY4txlCQJSGlFKUaBVLxGgWR0CWrW225QP7dX2UKGgGaAloD0MIJ/p8lBFZcECUhpRSlGgVTQ8BaBZHQJatxHJ9y951fZQoaAZoCWgPQwjr/xzmy9lvQJSGlFKUaBVNRQFoFkdAlq3NX1anrXV9lChoBmgJaA9DCA7Y1eTpWXFAlIaUUpRoFU05AWgWR0CWreEsasIWdX2UKGgGaAloD0MIE36pnzdNckCUhpRSlGgVTR4BaBZHQJaveplz2ex1fZQoaAZoCWgPQwglsg+yLCRFQJSGlFKUaBVLw2gWR0CWsK8KXv6TdX2UKGgGaAloD0MIP47myEpibUCUhpRSlGgVTT4BaBZHQJaw1K3/gix1fZQoaAZoCWgPQwjo9LwbC+5SQJSGlFKUaBVL0WgWR0CWsaqKP4mDdX2UKGgGaAloD0MI2pHqOz8GckCUhpRSlGgVTUsBaBZHQJax2e7L+xZ1fZQoaAZoCWgPQwjp7c9FQ8RuQJSGlFKUaBVNGgFoFkdAlrH6GlANX3V9lChoBmgJaA9DCNWXpZ2aLlNAlIaUUpRoFUuyaBZHQJayq7mMfih1fZQoaAZoCWgPQwgEyxEykF1IQJSGlFKUaBVL2WgWR0CWs/e4kNWmdX2UKGgGaAloD0MIVMa/z7hEb0CUhpRSlGgVTRcCaBZHQJa0YWCVbA11fZQoaAZoCWgPQwifdvhrsudwQJSGlFKUaBVNHQFoFkdAlrSVRHf/FXV9lChoBmgJaA9DCEq3JXJBZnFAlIaUUpRoFU0LAWgWR0CWtOu9vjwQdX2UKGgGaAloD0MIzQLtDinJb0CUhpRSlGgVTQsBaBZHQJa1ppaiblR1fZQoaAZoCWgPQwipbFhTWV5wQJSGlFKUaBVNMQFoFkdAlrXzgQ6IWXV9lChoBmgJaA9DCHtoHyv4OXBAlIaUUpRoFU1HAWgWR0CWtvBqKxcFdX2UKGgGaAloD0MImfOMfUkQckCUhpRSlGgVTVMBaBZHQJa3EWvbGm11fZQoaAZoCWgPQwgEV3kCISZyQJSGlFKUaBVNCgFoFkdAlrd1IZqEe3V9lChoBmgJaA9DCNpWs874snFAlIaUUpRoFU0IAWgWR0CWuMW+oLofdX2UKGgGaAloD0MIxEFClG+KckCUhpRSlGgVTSUBaBZHQJa5gDB/I811fZQoaAZoCWgPQwi6ERYVcZpwQJSGlFKUaBVNCAFoFkdAlrmoyTINmXV9lChoBmgJaA9DCJupEI/EBnFAlIaUUpRoFU0EAWgWR0CWubsJ6Y3OdX2UKGgGaAloD0MILNUFvIy1cECUhpRSlGgVTQcBaBZHQJa57zvqkdp1fZQoaAZoCWgPQwhCJ4QOuiNwQJSGlFKUaBVNzgFoFkdAlro5vHcUNHV9lChoBmgJaA9DCNwODYtRiUxAlIaUUpRoFUvMaBZHQJa61X+2mYV1fZQoaAZoCWgPQwj9SufDs/VtQJSGlFKUaBVNDQFoFkdAlrvkPDpC8nV9lChoBmgJaA9DCCPajqm7s3FAlIaUUpRoFU1MAWgWR0CWvJdAxBVudX2UKGgGaAloD0MIm49rQ4WncUCUhpRSlGgVTSoBaBZHQJa9IhTwUg11fZQoaAZoCWgPQwhVTntKzottQJSGlFKUaBVNJgFoFkdAlr0yb6P8ynV9lChoBmgJaA9DCD7MXrYdg29AlIaUUpRoFU0HAWgWR0CWvZHJtBOYdX2UKGgGaAloD0MI5gMCnUlnS0CUhpRSlGgVS+ZoFkdAlr20pZwGW3V9lChoBmgJaA9DCMakv5dCBHBAlIaUUpRoFU0dAWgWR0CWveA2ycCpdX2UKGgGaAloD0MIO6buyq4JckCUhpRSlGgVTRUBaBZHQJa/RrftQbd1fZQoaAZoCWgPQwhH5pE/2IlwQJSGlFKUaBVNLQFoFkdAlr+KRQrMDHV9lChoBmgJaA9DCGEyVTAqyG9AlIaUUpRoFU0WAWgWR0CWwUtwJgLJdX2UKGgGaAloD0MIAfbRqSu/SECUhpRSlGgVS+doFkdAlsFi++M6zXV9lChoBmgJaA9DCBSvsrYpYnFAlIaUUpRoFU0UAWgWR0CWwmlp48lpdX2UKGgGaAloD0MInfLoRhhwcECUhpRSlGgVTSoBaBZHQJbDdamoBJZ1fZQoaAZoCWgPQwgddt8xfPFxQJSGlFKUaBVNNgFoFkdAlsOvaDf3vnV9lChoBmgJaA9DCJDaxMm9d3BAlIaUUpRoFU0HAWgWR0CWw7vTPSlWdX2UKGgGaAloD0MIiljEsIOYcECUhpRSlGgVTTgBaBZHQJbEVWCEpRZ1fZQoaAZoCWgPQwjfwyXHndhuQJSGlFKUaBVNDAFoFkdAlsVLTc6/7HV9lChoBmgJaA9DCNU/iGSI0nFAlIaUUpRoFU0OAWgWR0CWxl7KaG5+dX2UKGgGaAloD0MIeXO4Vvsfb0CUhpRSlGgVTQgBaBZHQJbG4xfv4M51fZQoaAZoCWgPQwjayHVTSmZxQJSGlFKUaBVL+GgWR0CWx2KUFB6bdX2UKGgGaAloD0MIuoJtxJNEbUCUhpRSlGgVTQkBaBZHQJbHlV5rxiJ1fZQoaAZoCWgPQwhoke18P2ByQJSGlFKUaBVNIwFoFkdAlsgP9P1tf3V9lChoBmgJaA9DCE1lUdjFlmtAlIaUUpRoFU0lAWgWR0CWyNqfvnbJdX2UKGgGaAloD0MI6rEtA04obkCUhpRSlGgVTSsBaBZHQJbMONn5BTp1fZQoaAZoCWgPQwgAj6hQXe1xQJSGlFKUaBVNSAFoFkdAls1sO9WZJHVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:634ce523c9eb9ebe1c3aa55090948a6628af4fb97eb9788c2ec1824e57d78d7a
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:447ad2f9fa7822bf0ef902ae306785c92f3db0fea811c22ea0c1f51e106eaa7c
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (212 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.5879097002306, "std_reward": 27.94203115318529, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T21:13:31.800110"}