ppo-LunarLander-v2 / config.json
Fixedbot's picture
Upload PPO LunarLander-v2 trained agent
0bccc93
raw
history blame
13.1 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fae22a57400>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fae22a57490>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fae22a57520>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fae22a575b0>", "_build": "<function ActorCriticPolicy._build at 0x7fae22a57640>", "forward": "<function ActorCriticPolicy.forward at 0x7fae22a576d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fae22a57760>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fae22a577f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fae22a57880>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fae22a57910>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fae22a579a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fae22a57a30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fae22a4f180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689093314819701486, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE0IpL1ciym6TbcxOWQhBzSjoGS6lpNSuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+zUOd5IH2MAWyUTRwBjAF0lEdAmw9mGM4tH3V9lChoBkdAQpgGt6ol2WgHS+JoCEdAmxCbs4T9KnV9lChoBkdAcMCfMfRu0mgHTTgBaAhHQJsTcX40uUV1fZQoaAZHQHEqYUBXCCVoB01FAWgIR0CbFTdjXnQqdX2UKGgGR0Bttu3MINVjaAdNOwFoCEdAmxb4RqXWv3V9lChoBkdAcVyutfXws2gHTWIBaAhHQJsZ/igkC3h1fZQoaAZHQHBpbiADq4ZoB005AWgIR0CbG7GPgeijdX2UKGgGR0A5xlbu+h4/aAdL8mgIR0CbHPrDZUT+dX2UKGgGR0BxYEM7U5MlaAdNQgFoCEdAmx67mQr+YXV9lChoBkdAbewol2NedGgHTQoBaAhHQJshTNiYsup1fZQoaAZHQGPKMlTm4iJoB03oA2gIR0CbJ+xKxs2vdX2UKGgGR0BNz9vsJIDpaAdL92gIR0CbKULg4wRHdX2UKGgGR0BuujSw4bS7aAdNMQFoCEdAmyrvJiiItXV9lChoBkdASahIg/1QImgHS9FoCEdAmywUsSTQmnV9lChoBkdAcZVcZLqUvGgHTRoBaAhHQJsu0clw97p1fZQoaAZHQEoW1k1/DtRoB0vgaAhHQJswhgiNbTt1fZQoaAZHQEZoh0yP+4toB0vNaAhHQJsyBvXK8th1fZQoaAZHQHLtaJl8PWhoB00+AWgIR0CbNFauwHJLdX2UKGgGR0ByRU4vN/vwaAdNKwFoCEdAmzgO/gzguXV9lChoBkdARwO96C17Y2gHS/NoCEdAmzoOgQHzH3V9lChoBkdAclv9kz41xmgHTTYBaAhHQJs8q2x6fJ51fZQoaAZHQBKOCwr1/UhoB0vraAhHQJtAJs67ulZ1fZQoaAZHQG+0/KhcqvxoB003AWgIR0CbQiwuuievdX2UKGgGR0BwyiXZ5AyEaAdNLQFoCEdAm0PQRsdkrnV9lChoBkdAcqFGRmseXGgHTU0BaAhHQJtFox46fap1fZQoaAZHQGXKs4cWCVdoB03oA2gIR0CbTDfek56udX2UKGgGR0Bwx3EYO2AoaAdNWQFoCEdAm0/6nWJ79nV9lChoBkdAcOE5gw482mgHTT8BaAhHQJtSOfFrEcd1fZQoaAZHQC5uOfdyksVoB0viaAhHQJtTyz4UN8V1fZQoaAZHQHG+LpmmLtNoB01yAWgIR0CbWEwY+B6KdX2UKGgGR0BRCoOhCdBjaAdL/2gIR0CbWlquKXOXdX2UKGgGR0BkCscp9ZzQaAdN6ANoCEdAm2KD3Zf2K3V9lChoBkdAQ2bE9+w1SGgHS/xoCEdAm2PY/eLvTnV9lChoBkdAcJA7ROUMX2gHTTgBaAhHQJtlh6zE74l1fZQoaAZHQHCl4CIUJv5oB00fAWgIR0CbaC4cWCVbdX2UKGgGR0Bv6rsdDIBBaAdNXQFoCEdAm2qHrt3OfXV9lChoBkdAcd+6dDpkgGgHTR4BaAhHQJtskUGmk311fZQoaAZHQG4EoaLn9vVoB00uAWgIR0CbcCEgW8AadX2UKGgGR0BxaOSV4X41aAdNOAFoCEdAm3KcFhXr+3V9lChoBkdAbnsWweNkv2gHTSgBaAhHQJt1CBg/keZ1fZQoaAZHQEceAe7tiQVoB0vRaAhHQJt2trLyMDR1fZQoaAZHQHIONz0Yj0NoB012AWgIR0Cbe2KMefZmdX2UKGgGR0BtrFzySV4YaAdNVwFoCEdAm31D+FUQ1HV9lChoBkdAbkgrhisnzGgHTT4BaAhHQJt/CzVtoBd1fZQoaAZHQG9kAB1cMVloB02XAWgIR0Cbgl8pkPMCdX2UKGgGR0ByGHdoFmnPaAdNXAFoCEdAm4RAgs9SuXV9lChoBkdAb07uUliSaGgHTT8BaAhHQJuGBFZxJd11fZQoaAZHQG1xU/W1+iJoB01QAWgIR0CbiPEwFkhBdX2UKGgGR0Bxr8VafSQYaAdNJgFoCEdAm4qPi1iON3V9lChoBkdAcMAJKraM72gHTVgBaAhHQJuMWoo/iYN1fZQoaAZHQHH6qdhAnlZoB03eAWgIR0CbkAJ9AooedX2UKGgGR0BtpFwzch1UaAdNVQFoCEdAm5HdKEnLJXV9lChoBkdAcLWadMCcPWgHTRkBaAhHQJuTVqQA+6l1fZQoaAZHQHAMNZJTVDtoB01KAWgIR0Cbljwco6S1dX2UKGgGR0BvCaDqW1MNaAdNMwFoCEdAm5fZ1Ng0CXV9lChoBkdAcixSncclxGgHTe4CaAhHQJudAX3xnWd1fZQoaAZHQG5CjHn2ZiNoB01GAWgIR0CbnsYsd1dPdX2UKGgGR0BJo2THKfWdaAdL32gIR0Cbn/V6u4gBdX2UKGgGR0A8feyAxzq9aAdL7mgIR0CbolFj/dZadX2UKGgGR0BxwEgxJul5aAdNCgJoCEdAm6XyeiBXjnV9lChoBkdAcmHTDwYtQWgHTaUBaAhHQJuqbP0I1Lt1fZQoaAZHQG3lUqYqoZRoB00VAmgIR0CbrovLX+VDdX2UKGgGR0BtjJTCLuQZaAdNiQJoCEdAm7VzK1XvIHV9lChoBkdAcMsOEdvKl2gHTX8BaAhHQJu3k5lvqC91fZQoaAZHQHBIBsEaESNoB01jAWgIR0CbuXppN9H+dX2UKGgGR0AzH2WY4Qz2aAdNFAFoCEdAm7wCiudPL3V9lChoBkdAb/hjDKoybmgHTXoBaAhHQJu+CGIsRQJ1fZQoaAZHQEDurBCUorpoB0v9aAhHQJu/YwmE5AB1fZQoaAZHQHIoqYAsCkpoB019AWgIR0CbwoeT3Zf2dX2UKGgGR0BwqIAR02cbaAdNhgFoCEdAm8So3Ns3ynV9lChoBkdAbNh6F/QSjGgHTUQBaAhHQJvGYzO5avB1fZQoaAZHQHHp4UWVNYdoB02EAWgIR0CbyY1EmY0EdX2UKGgGR0BudcNOM2m6aAdNCQJoCEdAm8xi79Q40nV9lChoBkdAchljrzGxU2gHTWwBaAhHQJvPbyUcGTt1fZQoaAZHQG4cXmV7hNxoB01eAWgIR0Cb0VKiwjdIdX2UKGgGR0BxV0XJo0yhaAdNjwFoCEdAm9ORky1uznV9lChoBkdAblt4EfT1CmgHTYoBaAhHQJvW0NvwVj91fZQoaAZHQG98Dv3JxNtoB02NAWgIR0Cb2Pv6j323dX2UKGgGR0Bs6JQ+EAYIaAdNUQFoCEdAm9rMEaESNHV9lChoBkdAcQPX+ERJ3GgHTSEBaAhHQJvdce/5+H91fZQoaAZHQHEDjgEU0vZoB01CAWgIR0Cb36mmLtNSdX2UKGgGR0BuzVRNyo4uaAdNUQFoCEdAm+IMCxNZeXV9lChoBkdAWF+mce8wpWgHTegDaAhHQJvrUD6nBLx1fZQoaAZHQHDcrQkX1rZoB000AWgIR0Cb72zQu27WdX2UKGgGR0Bt0mXzDn/2aAdNKQFoCEdAm/E0dJaq0nV9lChoBkdAcUNEf1YhdWgHTTQBaAhHQJvy3bypaRp1fZQoaAZHQHEt+mNzbN9oB02LAWgIR0Cb9iXcxj8UdX2UKGgGR0ByDeT4cm0FaAdNdgFoCEdAm/gpQP7N0XV9lChoBkdAcFL6KLsKLWgHTSIBaAhHQJv5ueGwiaB1fZQoaAZHQHH/xdQfp2VoB00fAWgIR0Cb/GfnfVI7dX2UKGgGR0BEPCM5wOvuaAdL9WgIR0Cb/bwx33YddX2UKGgGR0BxiQhRqGlAaAdNfQFoCEdAm/+9Nvfj0nV9lChoBkdAcRzVlf7aZmgHTSwBaAhHQJwBY/lhgE51fZQoaAZHQG2vW+oLofVoB02WAWgIR0CcBK9dNWU9dX2UKGgGR0BxHRXgccU/aAdNZQFoCEdAnAaW5H3DenV9lChoBkdAXBCmLtNSImgHTegDaAhHQJwNL0TURWd1fZQoaAZHQHJdKltTDO1oB00aAWgIR0CcDrsEq2BrdX2UKGgGR0Bgktpj+aScaAdN6ANoCEdAnBVN4A0bcXV9lChoBkdAcCF3Zf2K22gHTVYBaAhHQJwYZkYoAn51fZQoaAZHQHKGThDPWx1oB02gAWgIR0CcG1aRZEDydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}