Flamenco43 commited on
Commit
2991715
1 Parent(s): 4f28f69

End of training

Browse files
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/deberta-v3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: DeBERTaV3800abstractsNER
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # DeBERTaV3800abstractsNER
20
+
21
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1966
24
+ - Precision: 0.8035
25
+ - Recall: 0.8626
26
+ - F1: 0.8320
27
+ - Accuracy: 0.9414
28
+ - Per Tag Metrics: {'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9932602444284687}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9964503953989935}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.996989575844716}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9949676491732566}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9974388928828181}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999370956146657}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9952372393961179}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9963605319913731}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9972591660675773}, 'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9961808051761323}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9919572250179727}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.994832854061826}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9849928109273903}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9852624011502517}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9621675053918045}}
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 16
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 4
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Per Tag Metrics |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
59
+ | No log | 1.0 | 221 | 0.2739 | 0.7075 | 0.7756 | 0.7400 | 0.9147 | {'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9854421279654925}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.995057512580877}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9960460100647016}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.993754493170381}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9954169662113588}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999370956146657}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.993305176132279}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9942487419122933}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9955517613227893}, 'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.994383537023724}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9875988497483824}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9914180445722501}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9809938892882818}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9803199137311287}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9465312724658519}} |
60
+ | No log | 2.0 | 442 | 0.2200 | 0.7776 | 0.8219 | 0.7992 | 0.9299 | {'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9920021567217829}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9962257368799425}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9968098490294752}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.994608195542775}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9969446441409058}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999370956146657}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9944734004313444}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9958662832494608}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9965851905104242}, 'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9958213515456507}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.988812005751258}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9881829618979152}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9851725377426312}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9845434938892883}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9543943206326384}} |
61
+ | 0.3866 | 3.0 | 663 | 0.2019 | 0.7969 | 0.8559 | 0.8253 | 0.9390 | {'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9923166786484543}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9962706685837527}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.996764917325665}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9946531272465852}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9972142343637671}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999370956146657}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9950125808770669}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9962257368799425}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9970794392523364}, 'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9961808051761323}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9919572250179727}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9940690150970525}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9850826743350107}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9854421279654925}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9603253055355859}} |
62
+ | 0.3866 | 4.0 | 884 | 0.1966 | 0.8035 | 0.8626 | 0.8320 | 0.9414 | {'B-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9932602444284687}, 'I-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9964503953989935}, 'B-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.996989575844716}, 'B-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9949676491732566}, 'B-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9974388928828181}, 'I-SPL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.999370956146657}, 'I-CMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9952372393961179}, 'B-APL': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9963605319913731}, 'I-DSC': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9972591660675773}, 'I-SMT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9961808051761323}, 'B-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9919572250179727}, 'I-MAT': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.994832854061826}, 'I-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9849928109273903}, 'B-PRO': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9852624011502517}, 'O': {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'accuracy': 0.9621675053918045}} |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.41.2
68
+ - Pytorch 2.2.1+cu118
69
+ - Datasets 2.19.1
70
+ - Tokenizers 0.19.1
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/deberta-v3-base",
3
+ "architectures": [
4
+ "DebertaV2ForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "B-APL",
12
+ "1": "B-CMT",
13
+ "2": "B-DSC",
14
+ "3": "B-MAT",
15
+ "4": "B-PRO",
16
+ "5": "B-SMT",
17
+ "6": "B-SPL",
18
+ "7": "I-APL",
19
+ "8": "I-CMT",
20
+ "9": "I-DSC",
21
+ "10": "I-MAT",
22
+ "11": "I-PRO",
23
+ "12": "I-SMT",
24
+ "13": "I-SPL",
25
+ "14": "O"
26
+ },
27
+ "initializer_range": 0.02,
28
+ "intermediate_size": 3072,
29
+ "label2id": {
30
+ "B-APL": 0,
31
+ "B-CMT": 1,
32
+ "B-DSC": 2,
33
+ "B-MAT": 3,
34
+ "B-PRO": 4,
35
+ "B-SMT": 5,
36
+ "B-SPL": 6,
37
+ "I-APL": 7,
38
+ "I-CMT": 8,
39
+ "I-DSC": 9,
40
+ "I-MAT": 10,
41
+ "I-PRO": 11,
42
+ "I-SMT": 12,
43
+ "I-SPL": 13,
44
+ "O": 14
45
+ },
46
+ "layer_norm_eps": 1e-07,
47
+ "max_position_embeddings": 512,
48
+ "max_relative_positions": -1,
49
+ "model_type": "deberta-v2",
50
+ "norm_rel_ebd": "layer_norm",
51
+ "num_attention_heads": 12,
52
+ "num_hidden_layers": 12,
53
+ "pad_token_id": 0,
54
+ "pooler_dropout": 0,
55
+ "pooler_hidden_act": "gelu",
56
+ "pooler_hidden_size": 768,
57
+ "pos_att_type": [
58
+ "p2c",
59
+ "c2p"
60
+ ],
61
+ "position_biased_input": false,
62
+ "position_buckets": 256,
63
+ "relative_attention": true,
64
+ "share_att_key": true,
65
+ "torch_dtype": "float32",
66
+ "transformers_version": "4.41.2",
67
+ "type_vocab_size": 0,
68
+ "vocab_size": 128100
69
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb971f016007f026ac61cf104280d3c96c055c72d93532a8d48e557357bd0aac
3
+ size 735396724
runs/Sep13_16-47-15_DESKTOP-0CNUOPF/events.out.tfevents.1726242447.DESKTOP-0CNUOPF.22160.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81431c5b1d133804a7c1a95db6b17e14e3630bf24299559ed2540678ca33109f
3
+ size 7964
runs/Sep13_16-47-15_DESKTOP-0CNUOPF/events.out.tfevents.1726243279.DESKTOP-0CNUOPF.22160.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69cd9d379450cbda2995358649ed8fe388de88b548a12a74669ebb82e8615662
3
+ size 512
runs/Sep13_17-12-25_DESKTOP-0CNUOPF/events.out.tfevents.1726243945.DESKTOP-0CNUOPF.22160.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2b822206668e420bdc36b07a95981d5d22a131eb0a7c9342657f7d07fda6f51
3
+ size 7964
runs/Sep13_17-12-25_DESKTOP-0CNUOPF/events.out.tfevents.1726247777.DESKTOP-0CNUOPF.22160.3 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce96da96b86b964bcce13ee4ae5a60c225a63154eda4d6200a06527858729dcd
3
+ size 512
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": {
9
+ "content": "[UNK]",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ }
15
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "sp_model_kwargs": {},
54
+ "split_by_punct": false,
55
+ "tokenizer_class": "DebertaV2Tokenizer",
56
+ "unk_token": "[UNK]",
57
+ "vocab_type": "spm"
58
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cc792b6aeb44b6105d9f25bfd14c4a326edcdc371ece43087a64c2730388998
3
+ size 5112