--- license: apache-2.0 base_model: Flamenco43/MatBERT tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: MatBERT-conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.8569527611443779 - name: Recall type: recall value: 0.8670481319421071 - name: F1 type: f1 value: 0.8619708884055547 - name: Accuracy type: accuracy value: 0.9732876445621277 --- # MatBERT-conll2003 This model is a fine-tuned version of [Flamenco43/MatBERT](https://huggingface.co/Flamenco43/MatBERT) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0971 - Precision: 0.8570 - Recall: 0.8670 - F1: 0.8620 - Accuracy: 0.9733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1055 | 1.0 | 1756 | 0.0971 | 0.8570 | 0.8670 | 0.8620 | 0.9733 | | 0.047 | 2.0 | 3512 | 0.0992 | 0.8910 | 0.8803 | 0.8856 | 0.9770 | | 0.0206 | 3.0 | 5268 | 0.1094 | 0.9015 | 0.8930 | 0.8972 | 0.9787 | | 0.0075 | 4.0 | 7024 | 0.1126 | 0.8958 | 0.9000 | 0.8979 | 0.9793 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.1+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1