--- license: apache-2.0 base_model: Flamenco43/NanoBERT_V4 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NanoBertV1Step800k-CNER results: [] --- [Visualize in Weights & Biases](https://wandb.ai/nananansnsns/LLLM/runs/7w1o84kw) # NanoBertV1Step800k-CNER This model is a fine-tuned version of [Flamenco43/NanoBERT_V4](https://huggingface.co/Flamenco43/NanoBERT_V4) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0188 - Precision: 0.9049 - Recall: 0.9199 - F1: 0.9123 - Accuracy: 0.9942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0264 | 1.0 | 2000 | 0.0257 | 0.8680 | 0.8749 | 0.8714 | 0.9917 | | 0.0157 | 2.0 | 4000 | 0.0204 | 0.8834 | 0.9163 | 0.8995 | 0.9934 | | 0.0092 | 3.0 | 6000 | 0.0188 | 0.9049 | 0.9199 | 0.9123 | 0.9942 | | 0.0047 | 4.0 | 8000 | 0.0219 | 0.9041 | 0.9269 | 0.9153 | 0.9944 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1