File size: 4,556 Bytes
3c83e5a 6e33e62 3c83e5a 6e33e62 3c83e5a 6e33e62 3c83e5a 6e33e62 3c83e5a 00f634f 6e33e62 3c83e5a 6e33e62 3c83e5a 6e33e62 3c83e5a 6e33e62 3c83e5a 6e33e62 3c83e5a 6e33e62 3c83e5a 6e33e62 3c83e5a 6e33e62 3c83e5a 6e33e62 3c83e5a 6e33e62 3c83e5a 6e33e62 3c83e5a 6e33e62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- f1_score
model-index:
- name: results
results: []
license: apache-2.0
language:
- th
base_model:
- distilbert/distilbert-base-uncased
---
# Model: Fine-Tuned Transformer
This model is a fine-tuned version of the Transformer architecture using a custom-trained BPE tokenizer and a DistilBERT-like configuration. It has been fine-tuned on a specific dataset with a sequence length of 512 tokens for a classification task involving 3 labels.
### Key Evaluation Metrics:
- **Loss**: 0.3656
- **F1 Micro**: 0.8763
- **Validation Set Size**: 7608 samples
## Usage
```python
from transformers import DistilBertForSequenceClassification, PreTrainedTokenizerFast
import torch
# Load the tokenizer and model
tokenizers = PreTrainedTokenizerFast.from_pretrained("FlukeTJ/distilbert-base-thai-sentiment")
models = DistilBertForSequenceClassification.from_pretrained("FlukeTJ/distilbert-base-thai-sentiment")
# Set device (GPU if available, else CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
models = models.to(device)
def predict_sentiment(text):
# Tokenize the input text without token_type_ids
inputs = tokenizers(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
inputs.pop("token_type_ids", None) # Remove token_type_ids if present
inputs = {k: v.to(device) for k, v in inputs.items()}
# Make prediction
with torch.no_grad():
outputs = models(**inputs)
# Get probabilities
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get the predicted class
predicted_class = torch.argmax(probabilities, dim=1).item()
# Map class to sentiment
sentiment_map = {1: "Neutral", 0: "Positive", 2: "Negative"}
predicted_sentiment = sentiment_map[predicted_class]
# Get the confidence score
confidence = probabilities[0][predicted_class].item()
return predicted_sentiment, confidence
# Example usage
texts = [
"สุดยอดดด"
]
for text in texts:
sentiment, confidence = predict_sentiment(text)
print(f"Text: {text}")
print(f"Predicted Sentiment: {sentiment}")
print(f"Confidence: {confidence:.2f}")
# =============================
# Result
# Text: สุดยอดดด
# Predicted Sentiment: Positive
# Confidence: 0.96
# =============================
```
## Model Description
This model is based on a **DistilBERT** architecture with the following configuration:
- **Sequence Length**: 512 tokens
- **Number of Layers**: 6 transformer layers
- **Number of Attention Heads**: 8
- **Vocabulary Size**: 20,000 (custom Byte Pair Encoding tokenizer)
- **Max Position Embeddings**: 512
- **Pad Token ID**: Defined by the custom tokenizer
- **Number of Labels**: 3 (for multi-class classification)
The tokenizer used for this model is a custom Byte Pair Encoding (BPE) tokenizer trained on the combined training and test datasets.
## Tokenizer
A custom tokenizer was built using **Byte Pair Encoding (BPE)** with a vocabulary size of 20,000. The tokenizer was trained on both the training and test sets to capture a wide range of token patterns.
## Training and Evaluation Data
- Training Set Size: 43,112 samples
- Validation Set Size: 7,608 samples
The model was trained and evaluated on a dataset that has not been publicly released. It was trained for a multi-class classification task with 3 possible labels.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 88
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
## Training Results
| Training Loss | Step | Validation Loss | F1 Micro |
|:-------------:|:----:|:---------------:|:--------:|
| 0.8035 | 500 | 0.5608 | 0.7821 |
| 0.4855 | 1000 | 0.4392 | 0.8266 |
| 0.3769 | 1500 | 0.3930 | 0.8433 |
| 0.3159 | 2000 | 0.3589 | 0.8675 |
| 0.279 | 2500 | 0.3552 | 0.8697 |
| 0.2463 | 3000 | 0.3812 | 0.8699 |
| 0.226 | 3500 | 0.3619 | 0.8690 |
| 0.2072 | 4000 | 0.3548 | 0.8754 |
| 0.1926 | 4500 | 0.3656 | 0.8763 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 3.0.0
- Tokenizers 0.19.1 |