p-s's picture
Initial release
84a7f0d
|
raw
history blame
3.08 kB
metadata
language:
  - ja
license: cc-by-sa-4.0
tags:
  - zero-shot-classification
  - text-classification
  - nli
  - pytorch
metrics:
  - accuracy
datasets:
  - JSNLI
pipeline_tag: text-classification
widget:
  - text: あなたが好きです。 あなたを愛しています。
model-index:
  - name: bert-base-japanese-jsnli
    results:
      - task:
          type: text-classification
          name: Natural Language Inference
        dataset:
          type: snli
          name: JSNLI
          split: dev
        metrics:
          - type: accuracy
            value: 0.9288
            verified: false

bert-base-japanese-jsnli

This model is a fine-tuned version of cl-tohoku/bert-base-japanese-v2 on the JSNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2085
  • Accuracy: 0.9288

How to use the model

Simple zero-shot classification pipeline

from transformers import pipeline

classifier = pipeline("zero-shot-classification", model="Formzu/bert-base-japanese-jsnli")

sequence_to_classify = "いつか世界を見る。"
candidate_labels = ['旅行', '料理', '踊り']
out = classifier(sequence_to_classify, candidate_labels, hypothesis_template="この例は{}です。")
print(out)
#{'sequence': 'いつか世界を見る。', 
# 'labels': ['旅行', '料理', '踊り'], 
# 'scores': [0.6758995652198792, 0.22110949456691742, 0.1029909998178482]}

NLI use-case

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

model_name = "Formzu/bert-base-japanese-jsnli"
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)

premise = "いつか世界を見る。"
label = '旅行'
hypothesis = f'この例は{label}です。'

input = tokenizer.encode(premise, hypothesis, return_tensors='pt').to(device)
with torch.no_grad():
    logits = model(input)["logits"][0]
    probs = logits.softmax(dim=-1)
    print(probs.cpu().numpy(), logits.cpu().numpy())
#[0.68940836 0.29482093 0.01577068] [ 1.7791482   0.92968255 -1.998533  ]

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4054 1.0 16657 0.2141 0.9216
0.3297 2.0 33314 0.2145 0.9236
0.2645 3.0 49971 0.2085 0.9288

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1